PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 28 | 2 |
Tytuł artykułu

Effects of cyanobacterial toxins, microcystins on freshwater invertebrates

Autorzy
Warianty tytułu
PL
Działanie toksyn sinicowych, mikrocystyn na słodkowodne bezkręgowce
Języki publikacji
EN
Abstrakty
EN
Cyanobacteria, also known as blue-green algae, are prokaryotic, phototrophic microorganisms that may form massive blooms in eutrophic water reservoirs. Some cyanobacterial strains are able to produce secondary metabolites – cyanotoxins that may be hazardous to aquatic and terrestial animals. These compunds can be grouped into: hepatotoxins, neurotoxins, cytotoxins dermatotoxins and irritant toxins. Microcystins are well-known cyclic heptapeptides acting as inhibitors of protein phosphatases type 1 and 2A. These cyanotoxins induce various adverse effects in freshwater invertebrates including biochemical, physiological and behavioral changes. Moreover, accumulation of microcystins in different tissues occurs, therefore transfer of these cyanotoxins through the food chain to animals being at higher trophic levels may be possible. The purpose of this paper is to review the knowledge on the effects of microcystins on three main groups of freshwater invertebrates: zooplankton, higher crustaceans, mollusks and to indicate possible ecotoxicological consequences of this impact on aquatic environment and invertebrate aquacultures.
PL
Cyjanobakterie (sinice) są prokariotycznymi, fototroficznymi mikroorganizmami, które w eutroficznych zbiornikach wodnych mogą masowo proliferować, tworząc zakwity. Niektóre szczepy sinic zdolne są do produkcji cyjanotoksyn, wtórnych metabolitów, które mogą stanowić zagrożenie dla zwierząt wodnych oraz lądowych. Związki te można podzielić na: hepatotoksyny, neurotoksyny, cytotoksyny, dermatotoksyny oraz toksyny drażniące. Mikrocystyny są dobrze opisanymi cyklicznymi heptapeptydami będącymi inhibitorami białkowych fosfataz typu 1 oraz 2A. Wywołują rozmaite szkodliwe efekty u słodkowodnych bezkręgowców, np. zmiany biochemiczne, fizjologiczne oraz behawioralne. Mikrocystyny dzięki zdolności do akumulacji w różnych tkankach mogą ponadto ulegać transferowi do zwierząt będących na wyższych poziomach łańcucha troficznego. Celem artykułu jest przegląd stanu wiedzy na temat oddziaływania mikrocystyn na trzy główne grupy bezkręgowców słodkowodnych: zooplanktonu, wyższych skorupiaków i mięczaków oraz wskazanie jego możliwych konsekwencji ekotoksykologicznych na środowisko wodne i akwakultury bezkręgowców.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
28
Numer
2
Opis fizyczny
p.185-195,fig.,ref.
Twórcy
autor
  • Department of Physiology and Ecotoxicology, John Paul II Catholic University of Lublin, Konstantynow 1, 20-550 Lublin, Poland
Bibliografia
  • AGRAWAL M.K., BAGCHI D., BAGCHI S.N. 2001. Acute inhibition of protease and suppression of growth in zooplankter, Moina macrocopa, by Microcystis blooms collected in Central India. Hydrobiologia, 464: 37–44.
  • AGRAWAL M.K., ZITT A., BAGCHI D., WECKESSER J., BAGHI S.N., VON ELERT E. 2005. Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC7806. Environ. Toxicol., 20: 314–322.
  • BAKER S.M., LEVINTON J.S., KURDZIEL J.P., SHUMWAY S.E. 1998. Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston load. J. Shellfish Res., 17: 1207–1213.
  • BEDNARSKA A. 2006. Sinice i ich wpływ na roślinożerne zwierzęta planktonowe. Wiad. Ekol., 52: 59–88.
  • BERMAN-FRANK I., LUNDGREN P., FALKOWSKI P. 2003. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res. Micobiol., 154: 157–164.
  • BLANCHETTE M.L., HANEY J.F. 2002. The effect of toxic Microcystis aeruginosa on four different populations od Daphnia. UNH Center for Freshwater Biology Research, 4: 1–10.
  • BŁASZCZYK A., TORUŃSKA A., KOBOS J., BROWARCZYK-MATUSIAK G., MAZUR-MARZEC H. 2010. Ekologia toksycznych sinic. Zakwity sinic (Cyjanobakterii). Kosmos, 59: 173–198.
  • BOWNIK A., RYMUSZKA A., SIEROSŁAWSKA A., SKOWROŃSKI T. 2012. Anatoxin-a induces apoptosis of leukocytes and decreases the prolifrative ability of lymphocytes of common carp (Cyprinus carpio L.) in vitro. Pol. J. Vet. Sci., 15: 531–535.
  • BURMESTER V., NIMPTSCH J., WIEGAND C. 2012. Adaptation of freshwater mussels to cyanobacterial toxins: Response of the biotransformation and antioxidant enzymes. Ecotoxicol. Environ. Saf., 78: 296–309.
  • CARMICHAEL W.W. 1992. Cyanobacteria secondary metabolites – The cyanotoxins. J. Appl. Bacteriol., 72: 445– 459.
  • CARMICHAEL W.W. 1997. The Cyanotoxins. Adv. Botan. Res., 27: 211–256.
  • CHEN W., SONG L., OU D., GAN N. 2005. Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LR. Environ. Toxicol., 20: 323–330.
  • CHEN J., XIE P. 2007. Microcystin accumulation in freshwater bivalves from Lake Taihu, China, and the potential risk to human consumption. Environ. Toxicol. Chem., 26: 1066–1073.
  • DAO T.S., DO-HONG L-C.,WIEGAND C. 2010. Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon, 55: 1244–1254.
  • DAVIS T.W., GOBLER C.J. 2011. Grazing by mesozooplankton and microzooplankton on toxic and non-toxic strains of Microcystis in the Transquaking River, a tributary of Chesapeake Bay. J. Plankton Res., 33: 415–430.
  • DEGANS H., DE MEESTER L. 2002. Top-down control of natural phyto- and bacterioplankton prey communities by Daphnia magna and by the natural zooplankton community of the hypertrophic Lake Blankaart. Hydrobiologia, 479: 39–49.
  • DEMOTT W.R., DHAWALLE S. 1995. Inhibition of in vitro protein phosphatase activity in three zooplankton species by microcystin-LR, a toxin from cyanobacteria. Arch. Hydrobiol., 134: 417–424.
  • DEMOTT W.R., ZHANG Q.X., CARMICHAEL W.W. 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr., 36: 1346–1357.
  • FERRÃO-FILHO A., KOZLOWSKY-SUZUKI B. 2011. Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar. Drugs, 12: 2729–2772.
  • FULTON R.S., PAERL H.W. 1988. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations. Oecologia, 76: 383–389.
  • GARCIA A.C., BARGU S., DASH P., RABALAIS N.N., SUTOR M., MORRISON W., WALKER N.D. 2010. Evaluating the potential risk of microcystins to blue crab (Callinectes sapidus) fisheries and human health in a eutrophic estuary. Harmful Algae, 9: 134–143.
  • GÈRARD C., BRIENT L., ROUZIC B.L. 2005. Variation in the response of juvenile and adult gastropods (Lymnaea stagnalis) to cyanobacterial toxin (microcystin-LR). Environ. Toxicol., 20: 592–596.
  • GŁOWACKA J., WALERON M., SZEFEL-MARKOWSKA M., ŁOJKOWSKA E., WALERON K. 2007. Cyanobacteria – źródło związków biologicznie czynnych. Biotechnologia, 79: 95–112.
  • GRIFFITHS D.J., SAKER M.L. 2003. The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin. Environ. Toxicol., 18: 78–93.
  • GUO N., XIE P. 2006. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications. Environ. Pollut., 143: 513–518.
  • GUSTAFSSON S., HANSSON L.A. 2004. Development of tolerance against toxic cyanobacteria in Daphnia. Aquat. Ecol., 38: 37– 44.
  • JANG M.H., HA K., TAKAMURA N. 2008. Microcystin production by Microcystis aeruginosa exposed to different stages of herbivorous zooplankton. Toxicon, 51: 882–889.
  • JUHEL G., DAVENPORT J., O’HALLORAN J., CULLOTY S.C., RAMSAY R.M., JAMES K.J., FUREY A., ALLIS O. 2006. Pseudodiarrhoea in zebra mussels, Dreissena polymorpha (Pallas), exposed to microcystins. J. Exp. Biol., 209: 810–816.
  • JUNGMANN D., BENNDORF J. 1994. Toxicity to Daphnia of a compound extracted from laboratory and natural Microcystis spp, and the role of microcystins. Freshwater Biol., 32: 13–20.
  • KAEBERNICK M., NEILAN B.A. 2001. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol. Ecol., 35: 1–9.
  • LINDSAY J., METCALF J.S., CODD G.A. 2006. Protection against the toxicity of microcystin-LR and cylindrospermopsin in Artemia salina and Daphnia spp. by pre-treatment with cyanobacterial lipopolysaccharide (LPS). Toxicon., 48: 995–1001.
  • LIRȦS V., LINDBERG M., NYSTRÖM P., ANNADOTTER H., LAWTON L.A., GRAF B. 1998. Can ingested cyanobacteria be harmful to the signal crayfish (Pacifastacus leniusculus)? Freshwater Biol., 39: 233–242.
  • ŁOTOCKA M. 2001. Toxic effects of cyanobacterial blooms on the grazing activity of Daphnia magna Straus. Oceanologia, 43: 441–453.
  • LÜRLING M. 2003. Effects of microcystin-free and microcystin-containing strains of the cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna. Environ. Toxicol., 18: 202–210.
  • MAGALHÃES V.F., MARINHO M.M., DOMINGOS P., OLIVEIRA A.C., COSTA S.M., AZEVEDO L.O., AZEVEDO S.M.F.O. 2003. Microcystins (cyanobacteria hepatotoxins) bioaccumulation in sh and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon., 42: 289–295.
  • MARTINS J.C., LEÃO P.N., VASCONCELOS V. 2009. Differential protein expression in Corbicula fluminea upon exposure to a Microcystis aeruginosa toxic strain. Toxicon., 53: 409–416.
  • MONTAGNOLLI W., ZAMBONI A., LUVIZOTTO-SANTOS R.J., YUNES J.S. 2004. Acute effects of Microcystis aeruginosa from the Patos Lagoon estuary, Southern Brazil, on the microcrustacean Kalliapseudes schubartii (Crustacea: Tanaidacea). Arch. Environ. Contam. Toxicol., 46: 463–469.
  • PINHO G.L.L.,MOURA DA ROSA C.,MACIEL F.E., BIANCHINI A., YUNES J.S., PROENC¸ A L.A.O.,MONSERRAT J.M. 2005a. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Ecotoxicol. Environ. Saf., 61: 353–360.
  • PINHO G.L.L., MOURA DA ROSA C., MACIEL F.E., BIANCHINI A., YUNES J.S., PROENC¸ A L.A.O., MONSERRAT J.M. 2005b. Antioxidant responses after microcystin exposure in gills of an estuarine crab species pre-treated with vitamin E. Ecotoxicol. Environ. Saf., 61: 361–365.
  • PIRES L.M.D., KARLSSON K.M., MERILUOTO J.A.O., KARDINAAL E., VISSER P.M., SIERWERTSEN K., VAN DONK E., IBELINGS B.W. 2004. Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha. Aquat. Toxicol., 69: 385–396.
  • ROHRLACK T., DITTMANN E., BOERNER T., CHRISTOFFERSEN K. 2001. Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl. Environ. Microbiol., 67: 3523– 3529.
  • ROHRLACK T., CHRISTOFFERSEN K., DITTMANN E., NOGUEIRA I., VASCONCELOS V., BÖRNER T. 2005. Ingestion of microcystins by Daphnia: Intestinal uptake and toxic effects. Limnol. Oceanogr., 50: 440–448.
  • SABATINI S.E., BRENA B.M., LUQUET C.M., SAN JULIÁN M., PIREZ M., CARMEN RIOS DE MOLINA M.D. 2011. Microcystin accumulation and antioxidant responses in the freshwater clam Diplodon chilensis patagonicus upon subchronic exposure to toxic Microcystis aeruginosa. Ecotoxicol. Environ. Saf., 74: 1188–1194.
  • SIVONEN K. 2009. Cyanobacterial toxins. In: Encyclopedia of Microbiology. Eds. M. Schaechter, Elsevier Inc., pp. 290–307.
  • SMITH J.L., HANEY J.F. 2006. Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon., 48: 580–589.
  • THORSTRUP L., CHRISTOFFERSEN K. 1999. Accumulation of microcystin in Daphnia magna feeding on toxic Microcystis. Arch. Hydrobiol., 145: 447–467.
  • TOIVOLA D.M, ERIKSSON J.E, BRAUTIGAN D.L. 1994. Identification of protein phosphatase 2A as the primary target for microcystin-LR in rat liver homogenates. FEBS Lett., 344: 175–180.
  • TRICARICO E., BERTOCCHI S., BRUSCONI S., CASALONE E., GHERARDI F., GIORGI G., MASTROMEI G., PARISI G. 2008. Depuration of microcystin-LR from the red swamp crayfish Procambarus clarkii with assessment of its food quality. Aquaculture, 285: 90–95.
  • VALERIO E., CHAVES S., TENREIRO R. 2010. Diversity and impact of prokaryotic toxins on aquatic environments: a review. Toxins, 2: 2359–2410.
  • VANDERPLOEG H.A, LIEBIG J.R, CARMICHAEL W.W, AGY M.A, JOHEGEN T.H, FAHNENSTIEL G.L, NALEPA T.F. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J. Fish Aquat. Sci., 58: 1208–1221.
  • VINAGRE T.M, ALCIATI J.C, YUNES J.S, RICHARDS J., BIANCHI A., MONSERRAT J.M. 2002. Effects of extracts from the cyanobacterium Microcystis aeruginosa on ion regulation and gill Na⁺, K⁺ – ATPase and K⁺ – dependent phosphatase activities of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Physiol. Biochem. Zool., 75: 600–608.
  • WIEGAND C, PFLUGMACHER S. 2005. Ecotoxicological effect s of selected cyanobacterial secondary metabolites, a short review. Toxicol. Appl. Pharmacol., 203: 201–218.
  • WHITTON B.A., POTTS M. 2000. Introduction to the cyanobacteria. In: The ecology of cyanobacteria. Eds. B.A. Whitton, Potts M. Kluwer Academic Publishers, Dordrecht-London-Boston, pp. 1–11.
  • WHO. 1999. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Eds. I. Chorus, J. Bartram Routledge: London and New York, pp. 141–142.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-5ef63417-d562-4687-bb22-19f7398fc6b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.