PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 3 |

Tytuł artykułu

Enhancement of antioxidant production in Spirulina platensis under oxidative stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study examined the possibility of increasing the contents of some bioactive compounds of Spirulina platensis cultivated in medium containing various hydrogen peroxide concentrations (2, 4, 6 and 8 mM) as a model for environmental stress. A positive correlation was observed between the increase of H₂O₂ and increasing amounts of cellular lipophilic antioxidants (total carotenoids and α-tocopherol) and hydrophilic antioxidants [glutathione (GSH) and ascorbic acid (AsA)]. HPLC profile of carotenoids revealed that algae responded to the change of H₂O₂ exposure by the accumulation of higher amounts of β-carotene, astaxanthine, luteine, zeaxanthin and cryptoxanthin. S. platensis showed significant linear increase in activities of antioxidant enzymes, i.e., catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX) and superoxide dismutase (SOD), with increasing H₂O₂ concentrations. A pronounced increase of oxidative lesions’ indexes [thiobarbituric acid reactive substances (TBARS) and paramagnetic radical-EPR signal] was found in algal grown at 8 mM H₂O₂. These data revealed that S. platensis behaved with different strategies against H₂O₂ exposure which is dose dependent and their response strongly correlated with the scavenging enzymes (SOD, CAT, PX and APX) and antioxidant compounds (GSH, AsA, β-carotene, astaxanthine and α-tocopherol) in the antioxidant defense systems. Therefore, S. platensis could be considered as good candidates for successful cultivation in artificial open ponds under different environmental conditions, as high value health foods, functional foods and as source of wide spectrum of nutrients.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

3

Opis fizyczny

p.623-631,fig.,ref.

Twórcy

  • Department of Plant Biochemistry, National Research Centre, Cairo, Dokki, Egypt
autor
  • Department of Plant Biochemistry, National Research Centre, Cairo, Dokki, Egypt
autor
  • Department of Biochemistry, Faculty of Agriculture, Cairo University, Cairo, Egypt

Bibliografia

  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2003) Spirulina species as a source of carotenoids and α-tocopherol and its anticarcinoma factors. Biotechnology 3:222–240
  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2004) Production of antioxidant by the green alga Dunaliella salina. Int J Agric Biol 6:49–57
  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2007) Production of carotenoids from marine microalgae and its evaluation as safe food colorant and lowering cholesterol agents. Am-Eurasian J Agric Environ Sci 2:792–800
  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233. doi:10.1111/j.1399-3054.1997.tb04778.x
  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant 90:109–116. doi:10.1104/pp.90.1.109
  • Asada K, Yoshikawa K, Takahashi M, Maeda Y, Enmanji K (1975) Superoxide dismutase from a blue-green alga Plectonema boryanum. J Biol Chem 250:2801–2807
  • Augustin J, Klein PB, Becker D, Venugopal BP (1985) Vitamin. In: Methods of vitamin assay. Academic Press, Now York, p 323
  • Barros PM, Granbom M, Colepicolo P, Pedersėn M (2003) Temporal mismatch between induction of superoxide dismutase and ascorbate peroxidase correlates with high H₂O₂ concentration in seawater from clofibrate-treated red algae Kappaphycus alvarezii. Arch Biochem Biophys 420:161–168. doi:10.1016/ j.abb.2003.09.014
  • Ben-Amotz A, Shaish J (1992) In: Ben-Amotz A, Averon M (eds). Dunaliella: physiology, biochemistry and biotechnology. CRC, USA, pp 135–64
  • Bennoun P (1998) In: Rochais JD, Goldschmidt M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydompnas. Kluwer, Dordrecht, pp 675–83
  • Bischof K, Hanelt D, Wiencke C (2000) Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555–562. doi:10.1007/ s004250000313
  • Blokhina O, Virolainen E, Fagerstedt VK (2002) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram of protein utilizing of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697 (76)90527-3
  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. In: Colowic SP, Kaplan NO (eds) Methods of enzymology, vol 2. Academic Press, New York, p 764
  • Demming-Adams B, Adams WW (1994) Light stress and photoprotection related to the xanthophyll cycle. In: Foyer C, Mullineaux P (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 105–126
  • Dummermuth LA, Karsten U, Fisch KM, Ko´nig GM, Wiencke C (2003) Responses of marine macroalgae to hydrogen-peroxide stress. J Exp Mar Biol Ecol 289:103–121. doi:10.1016/S0022-0981(03)00042-X
  • El Baz FK, Aboul-Enein AM, El-Baroty GS, Youssef AM, Abd El-Baky HH (2002) Accumulation of antioxidant vitamins in Dunaliella salina. Online J Biol Sci 2:220–223
  • Elstner EF (1987) Metabolism of activated oxygen species. In: Davies DD (ed) Biochemistry of plants, vol II. Academic Press, London, pp 253–315
  • Elstner EF, Osswald W (1994) Mechanisms of oxygen activation during plant stress. Proc R Soc Edinburgh 102B:131–154
  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory, New York, pp 587–621
  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling: a review. New Phytol 146:359–388
  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523
  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880
  • Giasuddin ASM, Diplock AT (1981) The influence of vitamin E on membrane lipids of mouse fibroblast in culture. Arch Biochem Biophys 210:348–362
  • Ginnopolitis NC, Ries SK (1977) Superoxide dismutase occurrence in higher plants. Plant Physiol 59:309–314
  • Grant CM, MacIver FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515
  • Hans-Luck (1970) Catalase. In: Bergmeyer HU (ed) Method of enzymatic analysis (English edition). Academic Press, New York, pp 885–888
  • Haraguchi H, Ishikawa H, Kubo I (1997) Antioxdative action of diterpenoids from Podocarpus nagi. Planta Med 63:213–215
  • Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara coralline: model calculations and measurements with the pressure probe suggest transport of H₂O₂ water channels. J Exp Bot 51:2053–2066
  • Honya MK, Kinoshita T, Ishikawa M, Mori H, Nisizw K (1994) Seasonal variation in lipid content of cultured Laminaria japonica fatty acids, sterols, β-carotene and tocopherol. J Appl Phycol 6:25–29
  • Jones DP, Coates RJ, Flagg EW, Eley JW, Block GH, Greenberg RS, Gunter EW, Jackson B (1992) Glutathione in foods listed in the national cancer institutes health habits and history food frequency questionnaire. Nutr Cancer 17:57–75
  • Karpinski S, Reynolds H, Karpinksa B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657
  • Lu I, Sung MS, Lee TM (2006) Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Mar Biol 150:1–15
  • Manley LS (2002) Phytogenesis of halomethanes: a product of selection or a metabolic accident. Biogeochemistry 60:163–180
  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498
  • Nakano M, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279
  • Noctor G, Aris AM, Jouanin J, Kunert JK, Rennenberg H, Foyer H (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 321:623–647
  • Osmond B, Badger M, Maxwell K, Björkman O, Leegod R (1997) Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2:119–120
  • Payer HD (1971) First report upon the organization and experimental work of the Thailand German project on the production and utilization of single cell green algae as a protein source for human nutrition. Institute of Food Research and Product Development, Kasetsar Univ, Bangkok, Thailand
  • Peng M, Kuc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696–699
  • Polle A, Rennenberg H (1994) Photooxidative stress in trees. In: Foyer CH, Mullineaux PM et al (eds) Causes of photoxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton
  • Prasad KVS, Saradhi PP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10
  • Ridnour AL, Sim EJ, Choi J, Dickinson AD, Forman HJ, Ahmad MI, Coleman CM, Hunt RC, Spitz RD (2005) Nitric oxide-induced resistance to hydrogen peroxide stress is a glutamate cysteine ligase activity-dependent process. Free Rad Biol Med 38:1361–1371
  • Salguero A, Benito M, Vigara J, Vega JM, Vilchez C, Leo´n R (2003) Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng 20:249–253
  • Schneider S, Bergmann L (1995) Regulation of glutathione synthesis in suspension cultures of parsley and tobacco. Bot Acta 108:34–40
  • Schomburg D, Salzmann M, Stephan D (eds) (1994) Enzyme handbook 7. Springer, Berlin Semenenko EV, Abdullaev AA (1980) Parametric control of β-carotene biosynthesis in Dunaliella salina cells under conditions of intensive cultivation. Fizioloiya Rastenii 27:31–41
  • Silber R, Farber M, Papopoulos E, Nervla D, Liebes L, Bruch M, Bron R (1992) Glutathione depletion in chronic lymphocytic leukemia B-lymphocytes. Blood 80:2038–2040
  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51
  • Takeda T, Yokota A, Shigeoka S (1995) Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol 36:1089–1095
  • Tausz RM, Soledad M, Grille D (1998) Antioxidative defense and photoprotection in pine needles under field conditions. A multivariate approach to evaluate patterns of physiological responses at natural sites. Physiol Plant 104:760–768
  • Yamasaki H, Grace CS (1998) ESR detection of phytophenoxyl radicals stabilized by zinc ions: evidence for the redox coupling of plant phenolics with ascorbate in the H₂O₂-peroxidase system. FEBS Lett 422:377–380
  • Zarrouk C (1966) Contribution a l’etude dune cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitler. Ph.D. thesis. Universite de Paris, France

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5ef4b0ef-a44c-4826-9f33-0bc7c72222e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.