PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 163 | 07 |

Tytuł artykułu

Zastosowanie elektronicznego nosa do detekcji lotnych związków organicznych wytwarzanych przez grzyby patogeniczne dla roślin

Treść / Zawartość

Warianty tytułu

EN
Use of an electronic nose for the detection of volatile organic compounds produced by plants pathogenic fungi

Języki publikacji

PL

Abstrakty

EN
The dynamic recent development of technologies provides more and more new tools, thanks to which it is possible to quickly detect and identify the chemical composition of volatile organic compounds of fungal origin. An ‘electronic nose’ (e−nose) is one of such tools. The Forest Research Institute launched in the period of 2018−2020 the project entitled ‘Forecasting threats to forest ecosystems through the implementation of innovative electronic odor recognition system’. Its aim is to use an electronic nose to detect the odors of fungal pathogens that cause damping−off of seedlings belonging to Fusarium, Rhizoctonia, Cylindrocarpon, Phytophthora and Pythium genera as well as pine foils on an example of pine tree lappet caterpillars (Dendrolimus pini L.). In presented paper special attention was paid to the organic compounds of fungal origin. Many authors indicate that a large number of fungi secrete specific organic compounds that can be used to recognize them. The composition of these compounds may, however, differ depending on the conditions in which the organism develops or even on the virulence itself. Similar research made it possible to introduce an e−nose device for general use. They are used, inter alia, at airports to detect dangerous substances, to determine the quality of coffee, or to check food for its suitability for consumption. The aim of this work is to review the basic information on the volatile organic compounds released by fungi, their composition and the possibility of using an electronic nose for their early detection. Paper provides information on: methods used to identify volatile organic compounds, the basic differences between the discussed methods and information on the examples of the use of this technology in various industries, from the food industry, through medicine, to the army.

Wydawca

-

Czasopismo

Rocznik

Tom

163

Numer

07

Opis fizyczny

s.551-555,bibliogr.

Twórcy

autor
  • Zakład Ochrony Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Zakład Ochrony Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Zakład Ochrony Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn

Bibliografia

  • Bastos A. C., Magan N. 2007. Soil volatile fingerprints: use for discrimination between soil types under different environmental conditions. Sens. Actuators B 125: 556-562.
  • Börjesson T., Stöllman U., Schnürer J. 1990. Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates. Appl. Environ. Microbiol. 56: 3705-3710.
  • Breheret S., Talou T., Rapior S., Bessiere J. M. 1997. Monoterpenes in the aromas of fresh wild mushrooms. J. Agric. Food Chem. 45: 831-836.
  • Cabanes F., Sahgal N., Bragulat M., Magan N. 2009. Early discrimination of fungal species responsible of ochratoxin A contamination of wine and other grape products using an electronic nose. Mycotoxin Res. 25: 187-192.
  • Chiron N., Michelot D. 2005. Odeurs de champignons: chimie et role dans les interactions biotiques – une revue. Cryptogamie, Mycologie 26: 299-364.
  • Cho I. H., Namgung H. J., Choi H. K., Kim Y. S. 2008. Volatiles and key odorants in the pileus and stipe of pine--mushroom (Tricholoma matsutake Sing). Food Chem. 106: 71-76.
  • Fiedler N., Laumbach R., Kelly-McNeil K., Lioy P., Fan Z. H., Zhang J., Ottenweller J., Ohman-Strickland P., Kipen H. 2005. Health Effects of a Mixture of Indoor Air Volatile Organics, Their Ozone Oxidation Products, and Stress. Environ. Health Perspect. 113: 1542-1548.
  • Fraatz M. A., Zorn H. 2010. Fungal flavours. W: Hofrichter M. [red.]. The Mycota X: Industrial Applications. Second ed. Springer-Verlag, Berlin, Heidelberg. 249-264.
  • Gardner J. W., Bartlett P. N. 1992. Sensors and Sensory Systems for an Electronic Nose. Kluwer Academic Publisher, Norwell, MA.
  • Instrukcja ochrony lasu. 2012. CILP, Warszawa.
  • Jelén H. H., Mirocha C. J., Wasowicz E., Kamiński E. 1995. Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes. Applied and Environmental Microbiology 61 (11): 3815-3820.
  • Kolk A., Starzyk J. R. 1996. Atlas szkodliwych owadów leśnych. Multico, Warszawa.
  • Korpi A., Järnberg J., Pasanen A. L. 2009. Microbial Volatile Organic Compounds. Crit. Rev. Toxicol. 39: 139-193.
  • Kovalev B. G., Bolgar T. S., Zubov P. A., Zharkov D. G., Golosova M., Nesterov E. A., Tvaradze M. S. 1993. Identification of additional components of the sex pheromone of Dendrolimus pini. Chem Nat Compd 29: 135.
  • Leggieri M. C., Pont N. P., Battilani P., Magan N. 2010. Detection and discrimination between ochratoxin producer and nonproducer strains of Penicillium nordicum on a ham-based medium using an electronic nose. Mycotoxin Res. 27: 29-35
  • Magan N., Evans P. 2000. Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. J. Stored Prod. Res. 36: 319-340.
  • Morath S. U., Hung R., Bennett J. W. 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews 26 (2-3): 73-83.
  • Morey P., Wortham A., Weber A., Horner E., Black M., Muller W. 1997. Microbial VOCs in moisture damaged buildings. Healthy Build. 1: 245-250.
  • Naraghi K., Sahgal N., Adriaans B., Barr H., Magan N. 2010. Use of volatile fingerprints for rapid screening of antifungal agents Fungal volatile organic compounds 81 for efficacy against dermatophyte Trichophyton species. Sens. Actuators B 146: 521-526.
  • Nilsson A., Kihlstrom E., Lagesson V., Wessen B., Szponar B., Larsson L., Tagesson C. 2004. Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air 14: 74-82.
  • Ortíz-Castro R., Contreras-Cornejo H. A., Macías-Rodríguez L., López-Bucio J. 2009. The role of microbial signals in plant growth and development. Plant Signal. Behav. 4: 701-712.
  • Pagans E., Font X., Sanchez A. 2006. Emission of volatile organic compounds from composting of different solid wastes: Abatement by biofiltration. J. Hazard. Mater. 131: 179-186.
  • Pasanen A.-L., Lappalainen S., Pasanen P. 1996. Volatile organic metabolites associated with some toxic fungi and their mycotoxins. The Analyst 121: 19-49.
  • Pasanen P., Korpi A., Kalliokoski P., Pasanen A.-L. 1997. Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environ. Int. 23: 425-432.
  • Pearce T. C., Schiffman S. S., Nagle H. T., Gardner J. W. 2006. Handbook of machine olfaction: electronic nose technology. John Wiley & Sons.
  • Pont N. P., Kendall C. A., Magan N. 2012. Analysis of volatile fingerprints for monitoring anti-fungal efficacy against the primary and opportunistic pathogen Aspergillus fumigatus. Mycopathologia 173: 93-101.
  • Sahgal N., Magan N. 2008. Fungal volatile fingerprints: discrimination between dermatophyte species and strains by means of an electronic nose. Sens. Actuators B 131: 117-120.
  • Sahgal N., Monk B., Wasil M., Magan N. 2006. Trichophyton species: use of volatile fingerprints for rapid identification and discrimination. Br. J. Dermatol. 155: 1209-1216.
  • Sahgal N., Needham R., Cabanes F. J., Magan N. 2007. Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: a review. Food Addit. Contam. 24: 1161-1168.
  • Skrzecz I., Karpierz M., Ślusarski S., Tkaczyk M., Oszako T., Adamowicz L., Jastrzębski C., Pura B., Siegoczyński R. M., Tarakowski R. 2018. Modern technologies in forest protection – an attempt to use an electronic nose for detecting harmful insects and pathogens. Folia Forestalia Polonica 60 (2): 131-133.
  • Splivallo R., Novero M., Bertea C. M., Bossi S., Bonfante P. 2007. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 175: 417-424.
  • Stoppacher N., Kluger B., Zeilinger S., Krska R., Schuhmacher R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods 81: 187--193.
  • Śliwa E. 1992. Barczatka sosnówka. Biblioteczka leśnika. PWRiL, Warszawa.
  • Tirillini B., Verdelli G., Paolocci F., Ciccioli P., Frattoni M. 2000. The volatile organic compounds from the mycelium of Tuber borchii Vitt. Phytochemistry 55: 983-985.
  • Wilson A. D., Baietto M. 2009. Applications and advances in electronic-nose technologies. Sensors 9: 5099-5148.
  • Wilson A. D., Baietto M. 2011. Advances in electronic-nose technologies developed for biomedical applications. Sensors 11: 1105-1176.
  • Zeringue H. J., Bhatnagar D., Cleveland T. E. 1993. C(15)H(24) Volatile Compounds Unique to Aflatoxigenic Strains of Aspergillus flavus. Appl. Environ. Microbiol. 59: 2264-2270.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5ecca5d6-bd1a-4674-b676-18ad0d8c0a5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.