PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |

Tytuł artykułu

Applying landsat satellite thermal images in the analysis of Polish lake temperatures

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents a comparative analysis of thermal images from Landsat satellites with in situ measurements of water temperature based on the example of three analysed lakes in Poland (Łebsko, Gardno, and Jamno). The coefficient of determination R² in the first two lakes reached a value of 0.95, and in the third case 0.87. The obtained results suggest high coherence of both of the sources. Satellite data obtained with such coherence with in situ measurements can be considered to be of high quality. The fact opens a new chapter concerning continuous monitoring of surface temperature of lakes in Poland, which can be considerably expanded in comparison to the current state (the measurement network is currently constituted by several tens of relatively large lakes). The issue addressed in the paper refers to a dynamic development trend in research based on teledetection information. So far, however, such methodology has not been used for detailed research on lakes in Poland. The availability of information on thermal conditions in reference to a possibly high number of lakes is of key importance in the context of the observed climate changes and the resulting transformation of water ecosystems. Continuous monitoring offers a basis for the development of applicative solutions, potentially reducing the effects of global warming.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

5

Opis fizyczny

p. 2159-2165,fig.,ref.

Twórcy

autor
  • Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznan, Poland
autor
  • Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznan, Poland
  • Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznan, Poland
autor
  • Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznan, Poland

Bibliografia

  • 1. NĘDZAREK A., KUBIAK J., TÓRZ A. Organic pollution of Lake Dąbie waters in 1997-2000. Electronic Journal of Polish Agricultural Universities, Fisheries, 10, 3, 2007.
  • 2. PEŁECHATA A., PEŁECHATY, M. PUKACZ A. Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake, Aquat. Bot., 124, 2015.
  • 3. RAJWA-KULIGIEWICZ A., BIALIK R.J., ROWIŃSKI P.M. Wavelet characteristics of hydrological and dissolved oxygen time series in a lowland River, Acta Geophysica, 64, 3, 2016.
  • 4. PIKOSZ M., MESSYASZ B., GĄBKA M. Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland, Ecological Indicators, 74, 2017.
  • 5. WRZESIŃSKI D., CHOIŃSKI A., PTAK M. Effect of the North Atlantic Oscillation on the thermal characteristics of lakes in Poland, Acta Geophysica, 63, 3, 2015.
  • 6. CHOIŃSKI A., PTAK M., STRZELCZAK A. Changeability of accumulated heat content in alpine-type lakes, Polish Journal of Environmental Studies, 24, 6, 2015.
  • 7. PASŁAWSKI Z. Limnological research in Poland] [in:] Dynowska (ed.) Transformations of water relations in Poland as a result of natural and anthropogenic processes, Kraków, 56, 1993 [In Polish].
  • 8. SKOWRON R. The differentiation and the changeability of chosen elements of the thermal regime of water in lakes on Polish Lowland, Wydawnictwo Uniwersytetu M. Kopernika, Toruń, 2011.
  • 9. CHOIŃSKI A. State of limnological research in Poland, Badania Limnologiczne, 1, 1998.
  • 10. HESTIR E.L., BRANDO V.E., BRESCIANI M., GIARDINO C., MATTA E., VILLA P., DEKKER A.G., Measuring freshwater aquatic ecosystems: the need for a hyperspectralglobal mapping satellite mission. Remote Sens. Environ. 167, 2015.
  • 11. ONOSZKO J. Application of the thermal imaging method in the assessment of the surface distribution of water temperature based on the example of Lake Żarnowieckie, Kom. Bad. Morza, Stud. I Mat. Ocean, 26, PAN, 1979.
  • 12. KOSTECKI M. Anthropopression on the formation of the thermal structure on the Rybnik dam-reservoir, Archives of Environmental Protection, 30, 4, 2004.
  • 13. JAROSZEWSKI, M., SOCHA, D., WOŹNIAK, C. Application of the method of thermal imaging in thermal monitoring of water bodies, Aura. 12, 2005.
  • 14. CHOIŃSKI A., HEESE T., OBERSKI T. The infrared camera: a tool for mountain lakes research, Limnological Review 13, 3, 129, 2013.
  • 15. CIOŁKOSZ A. Application of longwave infrared radiation in analyses of thermal river pollution. Prace Instytutu Geodezji i Kartografii, 22, 2, 51, 1975.
  • 16. SCHWAB D.J., LESHKEVICH G.A., MUHR G.C., Satellite measurements of surface water temperature in the Great Lakes: Great Lakes CoastWatch, Journal of Great Lakes Research, 18, 2, 1992.
  • 17. TODA T. Satellite thermal remote sensing in the BITEX’93 area, Japanese Journal of Limnology, 57, 4, 1996.
  • 18. OPPENHEIMER C. Remote sensing of the colour and temperature of volcanic lakes, International Journal of Remote Sensing, 18, 1, 1997.
  • 19. ROZENSTEIN O., QIN Z., DERIMIAN Y., KARNIELI A. Derivation of land surfacetemperature for Landsat-8 TIRS using a split window algorithm. Sensors, 14, 2014.
  • 20. ALCÂNTARA E.H., STECH J.L., LORENZZETTI J.A., BONNET M.P., CASAMITJANA X., ASSIREU A.T., DE MORAES NOVO E.M.L. Remote sensing of water surface temperatureand heat flux over a tropical hydroelectric reservoir. Remote Sens. Environ. 114, 2010.
  • 21. CHOIŃSKI A. Katalog jezior Polski, Wyd. Nauk. UAM., Poznań, 2006.
  • 22. COLL C., GALVE J.M., SÁNCHEZ J.M. AND CASELLES V. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with groundbased measurements. IEEE Transactions on Geoscience and Remote Sensing, 48, 2010.
  • 23. WLOCZYK C., RICHTER R., BORG E., NEUBERT W. Sea and lake surface temperature retrieval from Landsat thermal data in Northern Germany, International Journal of Remote Sensing, 27, 12, 2006.
  • 24. OESCH D., JAQUET J.M., KLAUS R., SCHENKER P. Multi-scale thermal pattern monitoring of a large lake (Lake Geneva) using a multi-sensor approach. Int. J. Remote Sens. 29, 2008.
  • 25. SENTLINGER G.I., HOOK S.J., LAVAL B. Sub-pixel water temperature estimation from thermal-infrared imagery using vectorized lake features, Remote Sensing of Environment, 112, 4, 2008.
  • 26. CROSMAN. T.J., HOREL D. MODIS-derived surface temperature of the Great Salt Lake, Remote Sensing of Environment, 113, 1, 2009.
  • 27. MOUKOMLA S., BLANKEN P.D. Remote sensing of the North American Laurentian Great Lakes’ surface temperature, Remote Sensing, 8, 4, Article number 286, 2016.
  • 28. DÖRNHÖFER K., OPPELT N. Remote sensing for lake research and monitoring – Recent Advanced, Ecological Indicators, 64, 2016.
  • 29. POLITI E., CUTLER M.E.J., ROWAN J.S. Using the NOAA advanced very highresolution radiometer to characterise temporal and spatial trends in watertemperature of large European lakes. Remote Sens. Environ., 126, 2012.
  • 30. CHAO RODRÍGUEZ Y., EL ANJOUMI A., DOMÍNGUEZ-GÓMEZ J.A., RODRÍGUEZ PÉREZ D., RICO E. Using Landsat image time series to study a small water body in North-ern Spain. Environ. Monit. Assess. 186, 2014.
  • 31. SIMON R.N., TORMOS T., DANIS P.-A. Retrieving water surface temperaturefrom archive LANDSAT thermal infrared data: application of the mono-channel atmospheric correction algorithm over two freshwater reservoirs. Int.J. Appl. Earth Obs. Geoinf. 30, 2014.
  • 32. JUKNYS R., ŽEIMAVIČIUS K., SUJETOVIENE G., GUSTAINYTE J. Response of tree seasonal development to climate Warming, Polish Journal of Environmental Studies, 21, 1, 2012.
  • 33. MATUSZKO D., WEGLARCZYK S. Relationship between sunshine duration and air temperature and contemporary global warming, International Journal of Climatology, 35, 12, 2015.
  • 34. ZIERNICKA-WOJTASZEK A., KRUŻEL, J. The diversification of air temperature trends in Poland (1981-2010), Polish Journal of Environmental Studies, 25, 5, 2016.
  • 35. CHOIŃSKI A., ŁAWNICZAK A., PTAK M. Changes in water resources of Polish lakes as influenced by natural and anthropogenic factors, Polish Journal of Environmental Studies, 25, 5, 2016.
  • 36. MAGEE M.R., WU C.H., ROBERTSON D.M., LATHROP R.C., HAMILTON D.P. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers, Hydrology and Earth System Sciences, 20, 5, 2016.
  • 37. SCHNEIDER P., HOOK S.J. Space observations of inland water bodies show rapid surface warming since 1985, Geophys. Res. Lett., 37, L22405, 2010.
  • 38. TONOOKA H. Regression imputation with ground air temperature for the satellite-based lake and reservoir temperature database in Japan, Proceedings of SPIE - The International Society for Optical Engineering, 8524, Article number 85240O, 2012.
  • 39. TONOOKA H., HIRAYAMA M. Water surface temperature retrieval for a small lake using ASTER thermal infrared data, International Geoscience and Remote Sensing Symposium (IGARSS), Article number 5653833, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5e7acef2-7f36-4b5c-b9bc-2f3a144473fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.