PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 02 |

Tytuł artykułu

Effect of salinity on plant growth and biological activities of Carthamus tinctorius L. extracts at two flowering stages

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the present study, we were interested in the effect of salt stress on phenolic and carotenoid contents, antioxidant and antimicrobial activity of two varieties of Carthamus tinctorius (Jawhara and 104) flowers. For this purpose, C. tinctorius flowers from plants grown under four saline treatments (0, 5, 10 and 15 g/L NaCl) were collected at two development stages. As salinity increased up to 10 g/L, results showed that total phenols, flavonoids, condensed tannins and carotenoid contents increased with salinity. Such variability might be of great importance in terms of valorizing this plant as a source of naturally secondary metabolites. Furthermore, our results showed an enhancement of antioxidant activity which was evaluated by four different test systems (DPPH, β-carotene–linoleic acid, chelating and reducing power assays) with increasing stress severity. Obtained results showed that, for the two varieties, salt effect was more pronounced at post flowering stage than full flowering one. The sensitivity test of the methanolic extracts of the harvested flowers was applied against seven human pathogenic bacteria and three yeast strains. Salinity reduced significantly the antimicrobial activity of flower extracts.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

02

Opis fizyczny

p.433-445,fig.,ref.

Twórcy

autor
  • Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopol, BP.901, 2050, Hammam-Lif, Tunisia
autor
  • Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopol, BP.901, 2050, Hammam-Lif, Tunisia
autor
  • UR Ecophysiologie Environnementale et Procedes Agroalimentaires, BiotechPole de Sidi Thabet Universite de La Manouba, Manouba, Tunisia
autor
  • Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopol, BP.901, 2050, Hammam-Lif, Tunisia
autor
  • Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopol, BP.901, 2050, Hammam-Lif, Tunisia

Bibliografia

  • Abogadallah MG (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374.
  • Ayaz FA, Kadioglu A, Turgut R (2000) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rose.) Eichler. Can J Plant Sci 80:373–378.
  • Ben Abdallah S, Rabhi M, Harbaoui F, Zar-Kalai F, Lachâal M, Karray-Bouraoui N (2013) Distribution of phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and their induction by salt stress. Acta Physiol Plant 35:1161–1169.
  • Ben Taârit M, Msaada K, Hosni K, Marzouk B (2010) Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119:951–956.
  • Ben Taârit M, Msaada K, Hosni K, Marzouk B (2012) Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J Sci Food Agric 92:1614–1619.
  • Borghesi E, González-Miret ML, Escudero-Gilete ML, Malorgio F, Heredia FJ, Meléndez-Martínez AJ (2011) Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J Sci Food Agric 59:11676–11682.
  • Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H, Marzouk B (2008) Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comp Rend Biol 331: 48–55.
  • Cano A, Medinaan A, Bermejo A (2008) Bioactive compounds in different citrus varieties. Discrimination among cultivars. J Food Comp Anal 21:377–381.
  • Dajue L, Hans-Henning M (1996) Safflower Carthamus tinctorius L. Int Plant Gen Res Inst 92:207–297.
  • Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Sci Food Agric 50:3010–3014.
  • Djeridane M, Yousfi B, Nadjemi D, Boutassouna P, Stocker N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660.
  • Dow AI, Cline TA, Horning EV (1981) Salt tolerance studies on irrigated Mint. Bulletin of Agriculture Research Center, Washington State University, Pullman, no. 906, p 11.
  • Falleh H, Ksouri R, Chaieb K, Bouraoui NK, Trabelsi N, Boulaaba M, Abdelly C (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comp Rend Biol 331:372–379.
  • Francois LE, Bernstein L, Gill S, Tuteja N (1964) Salt tolerance of safflower. Agron J 54:38–40.
  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930.
  • Gressel J, Galun E (1994) Genetic controls of photooxidant tolerance. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plant. CRC Press, Boca Raton, pp 237–274.
  • Griffin GS, Markham LJ, Leach ND (2000) An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. J Essent Oil Res 12:149–255.
  • Haghighi Z, Karimi N, Modarresi M, Mollayi S (2012) Enhancement of compatible solute and secondary metabolites production in Plantago ovata Forsk by salinity stress. J Med Plants Res 6:3495–3500.
  • Hanato T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chem Pharm Bull 36:1090–1097.
  • Hoagland DR, Arnon DS (1950) The water-culture method for growing plants without soil, California Agricultural Experiment Station (Circular 347). University of California, Berkeley, pp 1–32.
  • Kaffka SR, Kearney TE (1998) Safflower production in California, University of California Agricultural and Natural Research, Publication no. 21565, Okland.
  • Khan TA, Mazid M, Mohammad F (2011) Status of secondary plant products under abiotic stress: an overview. J Stress Physiol Biochem 7:75–98.
  • Kim HJ, Fonseca JM, Choi JH, Kubota C, Kwon DY (2007) Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J Agric Food Chem 56:3772–3776 .
  • Kirk JO, Allen RL (1965) Dependence of salinity stress on the activity of glutamine synthetase and glutamate dehydrogenase in triticale seedlings. Pol J Environ Stud 14:523–530.
  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol Biochem 45:244–249.
  • Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comp Rend Biol 331:865–873.
  • Kulisic T, Radonic A, Katalinic V, Milos M (2004) Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 85:633–640.
  • Lee G, Carrow RN, Duncan RR (2004) Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci 166:1417–1425.
  • Leyva A, Jarrillo JA, Salinas J, Martınez-Zapater M (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNA of Arabidopsis thaliana in light-dependent manner. Plant Physiol 108:39–46.
  • Maisuthisakul P, Suttajit M, Pongsawatmanit R (2007) Assessment of phenolic content and free radical scavenging capacity of some Thai indigenous plants. Food Chem 100:1409–1418.
  • Mane AV, Saratale GD, Karadge BA, Samant JS (2011) Studies on the effects of salinity on growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L.) Nash Emir. J Food Agric 23:59–70.
  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76.
  • Menadi H (1997) Action du stress salin sur la composition glycérlipidique au cours de la germination de la graine de la croissance de la plante de carthame (Carthamus tinctorius L). Mémoire de DEA de Physiologie végétale Option Ecophysiolgie Faculté des Sciences de Tunis, p 74.
  • Najine F (1996) Effet du chlorure de sodium sur le métabolisme lipidique du colza (Brassica napus). Thèse de doctorat Physiologie végétale Faculté des Sciences de Tunis, p 156.
  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chem 96:66–73.
  • Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jap J Nutr 44:307–315.
  • Rajguru SN, Banks SW, Gossett DR, Lucas MC, Millhollon EP (1999) Antioxidant response to salt stress during fiber development in cotton ovules. J Cotton Sci 3:11–18.
  • Rezazadeh A, Ghasemnezhad A, Mojtaba Barani M, Telmadarrehei T (2012) Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) Leave. Res J Med Plant 6:245–252.
  • Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84.
  • Riso P, Porrini M (1997) Determination of carotenoids in vegetable foods and plasma. Int J Vitam Nutr Res 67:47–54.
  • Salem N, Msaada K, Hamdaoui G, Limam F, Marzouk B (2011) Variation in phenolic composition and antioxidant activity during flower development of safflower (Carthamus tinctorius L.). J Agric Food Chem 59:4455–4463.
  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38.
  • Soares AA, Marques de Souza CG, Daniel FM, Ferrari GP, Gomes da Costa SM, Peralta RM (2009) Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chem 112:775–781.
  • Sonar BA, Nivas MD, Gaikwad DK, Chavan PD (2011) Assessment of salinity-induced antioxidative defense system in Colubrina asiatica brong. J Stress Physiol Biochem 7:193–200.
  • Statsoft (1998) STATISTICA for Windows (Computer program electronic 703 manual). Statsoft, Inc., Tulsa.
  • Sun BS, Ricardo-Da-Silva JM, Spranger MI (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Sci Food Agric 46:4267–4274.
  • Šutković J, Ler D, Gawwad MRA (2011) In vitro production of solasodine alkaloid in Solanum nigrum under salinity stress. J Phytol 3:3–49.
  • Telesinski A, Nowak J, Smolik B, Dubowska A, Skrzypiec N (2008) Effect of soil salinity on activity of antioxidant enzymes and content of ascorbic acid and phenols in bean (Phaseolus vulgaris L.) plants. J Elementol 13:401–409.
  • Waheed A, Hafiz IA, Qadir G, Mutaza G, Mahmood T, Ashraf M (2006) Effect of salinity on germination, growth, yield, ionic balance and solute composition of pigeon pea (Cajanus cajan (L.) millsp). Pak J Bot 38:1103–1117.
  • Zhao H, Dong J, Lu J, Chen J, Li Y, Shan L, Lin Y, Fan W, Gu G (2006) Effect of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in Barely (Hordeum vulgare L.). J Agric Food Chem 54:7277–7286.
  • Ziaf K, Amjad M, Pervez MA, Iqbal Q, Rajwana IA, Ayyub M (2009) Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pak J Bot 41:1797–1809.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5e09ea09-2862-4092-a4c4-6310a4a393c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.