PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Phytoremediation and biosorption potential of Lythrum salicaria L. for nickel removal from aqueous solutions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pollution of water sources with heavy metals is one of the most important global environmental issues. Even though there are many physical and chemical methods for removing heavy metals from contaminated water, in recent years cost-effective and environmentally friendly techniques such as phytoremediation and biosorption are used to remove heavy metals from water. In this study, phytoremediation and biosorption potential of Lythrum salicaria L. for nickel removal from aqueous solutions were investigated. Phytoremediation experiments were conducted at 10% Hoagland solution with 0, 10, 15, 20, 25, 50, and 100 mg/L nickel, and pH levels of 5, 6, and 7 to determine the accumulation of nickel in vegetative parts of L. salicaria. Phytoremediation results indicated that maximum Ni (II) accumulation by L. salicaria was at pH 7 with 10 mg Ni/L and distribution of Ni (II) was in the root (3,737.8 mg/kg DW) > shoot (697 mg/kg DW) > leaf (418.4 mg/kg DW) of L. salicaria. On the other hand, the effect of pH, biomass dosage, contact time, and initial Ni (II) concentration on the biosorption potential of L. salicaria roots was investigated in a batch system at room temperature. Optimum conditions were achieved at pH 7 with the biomass dosage of 6 g/L at an equilibrium contact time of 40 min. Equilibrium data was adapted to Langmuir and Freundlich isotherm models to find the best-fitting model. The Langmuir isotherm model described the biosorption process best with a maximum monolayer sorption capacity of 9.1580 mg/g for Ni (II) ions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2479-2485,fig.,ref.

Twórcy

autor
  • Phytoremediation and Biosorption Potential of Lythrum salicaria L. for Nickel Removal from Aqueous Solutions
autor
  • Department of Biochemistry, Dumlupinar University, Kutahya, Turkey 43100
autor
  • Department of Biology, Dumlupinar University, Kutahya, Turkey 43100

Bibliografia

  • 1. PULATSÜ S., TOPÇU A. Review of 15 Years of research on sediment heavy metal contents and sediment nutrient release in inland aquatic ecosystems, Turkey. J Water Resource Prot. 7, 85, 2015.
  • 2. ABDALLAH M.A.M. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol. 33, 1609, 2012.
  • 3. ISLAM M.S., AHMED M.K., RAKNUZZAMAN M., HABIBULLAH -AL- MAMUN M., ISLAM M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators. 48, 282, 2015.
  • 4. BORAN M., ALTINOK I. A Review of heavy metals in water, sediment and living organisms in the Black Sea. Turk. J. Fish. Aquat. Sci. 10, 565, 2010.
  • 5. GUPTA A., JOIA J., SOOD A., SOOD R., SIDHU C., KAUR G. Microbes as potential tool for remediation of heavy metals: A Review. J. Microb. Biochem. Techno. 8 (4), 364, 2016.
  • 6. TCHOUNWOU P.B., YEDJOU C.G., PATLOLLA A.K., SUTTON D.J. Heavy metals toxicity and the environment. EXS. doi: 10.1007/978-3-7643-8340-4_6, 2014.
  • 7. SZYCZEWSKI P., SIEPAK J., NIEDZIELSKI P., SOBCZYŃSKI T. Research on heavy metals in Poland. Polish J. of Environ. Stud. 18 (5), 755, 2009.
  • 8. SARI A., TUZEN M., ULUÖZLÜ Ö.D., SOYLAK M. Biosorption of Pb (II) and Ni (II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochem. Eng. J. 37, 151, 2007.
  • 9. GUNATILAKE S.K. Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. 1 (1), 12, 2015.
  • 10. GHOSH M., SINGH S.P. A review on phytoremediation of heavy metals and utilization of it’s by products. As. J. Energy. Env. 6 (4), 214, 2005.
  • 11. DIXIT R., WASIULLAH, MALAVIYA D., PANDIYAN K., SINGH U.B., SAHU A., SHUKLA R., SINGH B.P., RAI J.P., SHARMA P. K., LADE H., PAUL D. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability. 7, 2189, 2015.
  • 12. SHARMA S., RANA S., THAKKAR A., BALDI A., MURTHY R.S.R., SHARMA R.K. Physical, Chemical and phytoremediation technique for removal of heavy metals. Journal of Heavy Metal Toxicity and Diseases. 1 (2), 1, 2016.
  • 13. CHOJNACKA K. Biosorption and bioaccumulation-the prospects for practical applications. Environ. Int. 36, 299, 2010.
  • 14. ZABOCHNICKA-ŚWIĄTEK M., KRZYWONOS M. Potentials of biosorption and bioaccumulation processes for heavy metal removal. Pol. J. Environ. Stud. 23, 551, 2014.
  • 15. TANGAHU B.V., ABDULLAH S.R.S., BASRI H., IDRIS M., ANUAR N., MUKHLISIN M.A. Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. Article ID 939161, 1, 2011.
  • 16. DAVIS P.H. Flora of Turkey and East Egean Islands. Publisher: Edinburg University Press, London, 1965-1988.
  • 17. TURE C., BINGOL N. A., MIDDLETON B. Characterization of the habitat of Lythrum salicaria L. in floodplain forests in western Turkey-Effects on stem height and seed production. Wetlands 24, 711, 2004.
  • 18. PIWOWARSKI J.P., GRANICA S., KISS A.K. Lythrum salicaria L.-Underestimated medicinal plant from European traditional medicine. A review. J. Ethnopharmacol. 170, 226, 2015.
  • 19. RAUHA J.P., REMES S., HEINONEN M., HOPIA A., KÄHKÖNEN M., KUJALA T., PIHLAJA K., VUORELA H., VUORELA P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food. Microbiol. 56, 3, 2000.
  • 20. HUMADI S.S., ISTUDOR V. Lythrum salicaria (purple loosestrife). Medicinal use, extraction and identification of its total phenolic compounds. Farmica 57 (2), 192, 2009.
  • 21. CHEN C., HUANG D., LIU J. Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean 37, 304, 2009.
  • 22. CEMPEL M., NIKEL G. Nickel: A Review of Its Sources and Environmental Toxicology. Polish J. of Environ. Stud. 15 (3), 375, 2006.
  • 23. ZAMBELLI B., UVERSKY V.N., CIURLI S. Nickel impact on human health: An intrinsic disorder perspective. Biochimica et Biophysica Acta. 1864, 1714, 2016.
  • 24. MASOUMI F., KHADIVINIA E., ALIDOUSTA L., MANSOURINEJAD Z., SHAHRYARI S., SAFAEI M., MOUSAVI A., SALMANIAN A., ZAHIRI H. S., VALI H. Nickel and lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran. J. Environ. Chem. Eng. 4, 950, 2016.
  • 25. KACAR B., INAL A. Bitki Analizleri,1st ed.; Nobel Yayın Dağıtım Ltd. Şti.: Ankara, Türkiye, 157, 2008 [In Turkish]. 26. JMP SAS. SAS Institute Inc. USA, 1995.
  • 27. SINGH K., PANDEY S.N. Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J. Environ. Biol. 32, 391, 2011.
  • 28. CHAMI Z.A., AMER N., BITAR L.A., CAVOSKI I. Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int. J. Environ. Sci. Technol. 12, 3957, 2015.
  • 29. KAUR L., GADGIL K., SHARMA S. Role of pH in the accumulation of lead and nickel by common duckweed (Lemna minor). Int. J. Bioassays. 12, 191, 2012.
  • 30. KUKIER U., PETERS C.A., CHANEY R. L., ANGLE J. S., ROSEBERG R. J. The effect of pH on metal accumulation in two Alyssum species. J. Environ. Qual. 33 (6), 2090, 2004.
  • 31. FUENTES I.I., SPADAS-GIL F., TALAVERA-MAY C., FUENTES G., SANTAMARÍA J.M. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquatic Toxicology. 155, 142, 2014.
  • 32. YUSUF M., FARİDUDDİN Q., HAYAT S., AHMAD A. Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bull. Environ. Contam. Toxicol. 86, 1, 2011.
  • 33. VAJPAYEE P., RAI U.N., ALI M.B., TRIPATHI R.D., YADAV V., SINHA S., SINGH S.N. Chromium-Induced changes in Vallisneria spiralis L. and its role in phytoremedation of tannery effluents. Bull. Environ. Toxicol., 67, 246, 2001.
  • 34. ABDIA O., KAZEMI M. A review study of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 6 (5), 1386, 2015.
  • 35. ÖZCAN A.S., ÖZCAN A., TUNALI S., AKAR T., KIRAN I., GEDIKBEY T. Adsorption potential of lead (II) ions from aqueous solutions onto Capsicum annuum seeds. Separ. Sci. Technol. 42, 137, 2007.
  • 36. UCUN H., BAYHAN Y. K., KAYA Y., CAKICI A., ALGUR O. F. Biosorption of lead (II) from aqueous solution by cone biomass of Pinus sylvestris. Desalination 154 (3), 233, 2003.
  • 37. AKAR T., KAYNAK Z., ULUSOY S., YUVACI D., OZSARI G., AKAR S.T. Enhanced Biosorption of nickel (II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode. J. Hazard. Mater.163, 1134, 2009.
  • 38. HANIF M.A., NADEEM R., BHATTI H. N., AHMAD N. R., ANSARI T. M. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass. J. Hazard. Mater. B139 (2), 345, 2007.
  • 39. YUVARAJA G., KRISHNAIAH N., SUBBAIAH M.V., KRISHNAIAH A. Biosorption of Pb (II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agriculture waste. Colloid. Surface. B114, 75, 2014.
  • 40. REDDY D.H.K., HARINATH Y., SESHAIAH K., REDDY A.V.R. Biosorption of Pb (II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chem. Eng. J. 162, 626, 2010.
  • 41. FAWZY M., NASR M., ADEL S., NAGY H., HELMI S. Environmental approach and artificial intelligence for Ni (II) and Cd (II) biosorption from aqueous solution using Typha domingensis biomass. Ecol. Eng. 95, 743, 2016.
  • 42. TORAB-MOSTAEDI M., ASADOLLAHZADEH M., HEMATTI A., KHOSRAVI A. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan Inst. Chem. E. 44, 295, 2013.
  • 43. GUNDOGDU A., OZDES D., DURAN C., BULUT V.N., SOYLAK M., SENTURK H.B. Biosorption of Pb (II) ions from aqueous solution by pine bark (Pinus brutia Ten.). Chem. Eng. J. 153, 62, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5dd2c858-5c49-4a14-9bb8-43f62de2ff2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.