PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Variations of sediment archaea communities in different distribution areas of Bruguiera gymnoihiza Mangrove in Dongzhaigang, China

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Archaea communities widely exist in mangrove forest sediments, but their spatial variations among different distribution areas with salinity gradient in mangrove forest sediments is not well understood. This study used 16S rRNA Miseq sequence to investigate the sediment archaeal community structure and diversity of Bruguiera gymnoihiza mangrove forest in China along three different distribution areas. The results showed rich methanogen and ammonia-oxidizing archaea resources in the study site, with Methanobacterium, Methanothrix, Methanomassiliicoccus, Nitrosopumilus and Nitrososphaera (>1%) as the dominant genera. Mantel test and Redundancy analysis (RDA) results revealed that pH was the determinant for archaeal community structure in our study. The RDA result showed that the available K also contributed to archaeal community structure. There was a significant and positive relationship between pH and available P; in addition, the two values were significantly and negatively related to the observed OTU number. These results suggested that pH is the main determinant of the archaeal community structure and diversity in distribution areas of Bruguiera gymnoihiza in Dongzhaigang.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3343-3352,fig.,ref.

Twórcy

autor
  • School of Ecology and Environmental Sciences and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
  • Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, China
autor
  • Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
autor
  • Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, China
autor
  • Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
autor
  • Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, China
autor
  • Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
autor
  • Laboratory for Ecological Forecasting and Global Change, Northwest A&F University, Yangling, China
  • Institut des Sciences de l’Environnement, Universite du Quebec a Montreal, Montreal, Canada
autor
  • Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, China
autor
  • Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, China
autor
  • State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

Bibliografia

  • 1. SPALDING M., BLASCO F., FIELD C. World mangrove atlas. 1997.
  • 2. DONATO D.C., KAUFFMAN J.B., MURDIYARSO D., KURNIANTO S., STIDHAM M., KANNINEN M. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4 (5), 293, 2011.
  • 3. KATHIRESAN K., BINGHAM B.L. Biology of mangroves and mangrove ecosystems. Advances in marine biology, 40 (81), 2001.
  • 4. PIRES A.C., CLEARY D.F., ALMEIDA A., CUNHA Â., DEALTRY S., MENDONÇA-HAGLER L.C., SMALLA K., GOMES NC. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Applied and environmental microbiology, 78 (16), 5520, 2012.
  • 5. BHATTACHARYYA A., MAJUMDER N.S., BASAK P., MUKHERJI S., ROY D., NAG S., HALDAR A., CHATTOPADHYAY D., MITRA S., BHATTACHARYYA M. Diversity and Distribution of Archaea in the Mangrove Sediment of Sundarbans. Archaea, 2015.
  • 6. YAN B., HONG K., YU Z.-N. Archaeal communities in mangrove soil characterized by 16S rRNA gene clones. Journal of microbiology, 44 (5), 566, 2006.
  • 7. MENDES L.W., TAKETANI R.G., NAVARRETE A.A., TSAI S M.Shifts in phylogenetic diversity of archaeal communities in mangrove sediments at different sites and depths in southeastern Brazil. Research in microbiology, 163 (5), 366, 2012.
  • 8. PIRES A.C.D.C. Mangrove rhizosphere effect on sediment Archael communities. 2010.
  • 9. LYIMO T.J., POL A., JETTEN M.S., DEN CAMP H. J.O. Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. FEMS Microbiology Letters, 291 (2), 247, 2009.
  • 10. LYIMO T.J., POL A., DEN CAMP H.O., HARHANGI H.R., VOGELS G.D. Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. International journal of systematic and evolutionary microbiology, 50 (1), 171, 2000.
  • 11. TAKETANI R.G., FRANCO N.O., ROSADO A.S., VAN ELSAS J.D. Microbial community response to a simulated hydrocarbon spill in mangrove sediments. The Journal of Microbiology, 48 (1), 7, 2010.
  • 12. LI M., HONG Y.-G., CAO H.-L., GU J.-D. Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses. Ecotoxicology, 20 (8), 1780, 2011.
  • 13. WANG Y.-F., FENG Y.-Y., MA X., GU J.-D. Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Applied microbiology and biotechnology, 97 (17), 7919, 2013.
  • 14. ZHOU Z., MENG H., LIU Y., GU J.D., LI M. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Frontiers in Microbiology, 8, 2148, 2017.
  • 15. DILLON J.G., CARLIN M., GUTIERREZ A., NGUYEN V., MCLAIN N. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Frontiers in Microbiology, 4, 2013.
  • 16. BOUJELBEN I., GOMARIZ M., MARTÍNEZ-GARCÍA.M., SANTOS F., PEÑA A., LÓPEZ C., ANTÓN J., MAALEJ S. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Antonie van Leeuwenhoek, 101 (4), 845, 2012.
  • 17. BENLLOCH S., LÓPEZ-LÓPEZ A., CASAMAYOR E.O., ØVREÅS.L., GODDARD V., DAAE F.L., SMERDON G., MASSANA R., JOINT I., THINGSTAD F. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environmental Microbiology, 4 (6), 349, 2002.
  • 18. CASAMAYOR E.O., MASSANA R., BENLLOCH S., ØVREÅS.L., DÍEZ B., GODDARD V.J., GASOL J.M., JOINT I., RODRÍGUEZ-VALERA F., PEDRÓS-ALIÓ C. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environmental Microbiology, 4 (6), 338, 2002.
  • 19. SØRENSEN K.B., CANFIELD D.E., OREN A. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Applied and environmental microbiology, 70 (3), 1608, 2004.
  • 20. BENLLOCH S., ACINAS S.G., MARTÍNEZ-MURCIA A., RODRÍGUEZ-VALERA F. Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA [M]. Coastal Lagoon Eutrophication and ANaerobic Processes (CLE AN). Springer. 19, 1996.
  • 21. XIE W., ZHANG C., ZHOU X., WANG P. Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Applied microbiology and biotechnology, 98 (18), 7971, 2014.
  • 22. WEBSTER G., O’SULLIVAN L.A., MENG Y., WILLIAMS A.S., SASS A.M., WATKINS A.J., PARKES R.J., WEIGHTMAN A.J. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. Fems Microbiology Ecology, 91 (2), 1, 2015.
  • 23. JIANG H., DONG H., YU B., LIU X., LI Y., JI S., ZHANG C.L. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology, 9 (10), 2603, 2007.
  • 24. WALDRON P.J., PETSCH S.T., MARTINI A.M., NÜSSLEIN K. Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter. Applied and environmental microbiology, 73 (13), 4171, 2007.
  • 25. WANG Y.-F., GU J.-D. Effects of allylthiourea, salinity, and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms. Applied microbiology and biotechnology, 98 (7), 3257, 2014.
  • 26. LI W., GUAN W., CHEN H., LIAO B., HU J., PENG C., RUI J., TIAN J., ZHU D., HE Y. Archaeal communities in the sediments of different mangrove stands at Dongzhaigang, China. Journal of Soils and Sediments, 16 (7), 1995, 2016.
  • 27. YAO M., RUI J., LI J., DAI Y., BAI Y., HEDĚNEC P., WANG J., ZHANG S., PEI K., LIU C. Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biology and Biochemistry, 79 (81), 2014.
  • 28. SATO Y., WILLIS B.L., BOURNE D.G. Pyrosequencing-based profiling of archaeal and bacterial 16S rRNA genes identifies a novel archaeon associated with black band disease in corals. Environmental Microbiology, 15 (11), 2994, 2013.
  • 29. CAPORASO J.G., KUCZYNSKI J., STOMBAUGH J., BITTINGER K., BUSHMAN F.D., COSTELLO E.K., FIERER N., PENA A.G., GOODRICH J.K., GORDON J.I. QIIME allows analysis of high-throughput community sequencing data. Nature methods, 7 (5), 335, 2010.
  • 30. KUCZYNSKI J., LAUBER C.L., WALTERS W.A., PARFREY L.W., CLEMENTE J.C., GEVERS D., KNIGHT R. Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics, 13 (1), 47, 2012.
  • 31. FIERER N., JACKSON R.B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103 (3), 626, 2006.
  • 32. HARTMAN W.H., RICHARDSON C.J., VILGALYS R., BRULAND G.L. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences, 105 (46), 17842, 2008.
  • 33. CHU H., FIERER N., LAUBER C.L., CAPORASO J.G., KNIGHT R., GROGAN P. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12 (11), 2998, 2010.
  • 34. LAUBER C.L., HAMADY M., KNIGHT R., FIERER N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and environmental microbiology, 75 (15), 5111, 2009.
  • 35. ALLEN D.E., DALAL R.C., RENNENBERG H., MEYER R.L., REEVES S., SCHMIDT S. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biology & Biochemistry, 39 (2), 622, 2007.
  • 36. LU C.Y., WONG Y.S., TAM N F., YE Y., LIN P. Methane flux and production from sediments of a mangrove wetland on Hainan Island, China. Mangroves and Salt Marshes, 3 (1), 41, 1999.
  • 37. CHAUHAN R., DATTA A., RAMANATHAN A., ADHYA T. Factors influencing spatio-temporal variation of methane and nitrous oxide emission from a tropical mangrove of eastern coast of India. Atmospheric Environment, 107 (95), 2015.
  • 38. BORREL G., O’TOOLE P.W., HARRIS H.M., PEYRET P., BRUGÈRE J.-F., GRIBALDO S. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome biology and evolution, 5 (10), 1769, 2013.
  • 39. ZHOU Z., CHEN J., CAO H., HAN P., GU J.-D. Analysis of methane-producing and metabolizing archaeal and bacterial communities in sediments of the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes. Frontiers in Microbiology, 5, 2014.
  • 40. LIU Y. Methanopyrales [M]//TIMMIS K N. Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Heidelberg; Springer Berlin Heidelberg. 605, 2010.
  • 41. LIU Y. Methanococcales [M]. Handbook of Hydrocarbon and Lipid Microbiology. Springer. 573, 2010.
  • 42. ALAM I., BOUGOUFFA S., LAFI F.F., BAJIC V.B., ARCHER J.A. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. 2015.
  • 43. JEMANEH ZELEKE Q.S., WANG J.-G., HUANG M.-Y., XIA F., WU J.-H., QUAN Z.-X. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Frontiers in Microbiology, 4, 2013.
  • 44. NICOL G.W., LEININGER S., SCHLEPER C., PROSSER J.I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 10 (11), 2966, 2008.
  • 45. YOUSSEF N.H., ASHLOCK-SAVAGE K.N., ELSHAHED M.S. Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacteriales) in multiple saline sediment habitats. Applied and environmental microbiology, 78 (5), 1332, 2012.
  • 46. GARCIA J.-L., OLLIVIER B., WHITMAN W.B. The order Methanomicrobiales [M]. The prokaryotes. Springer. 208, 2006.
  • 47. XIONG J., LIU Y., LIN X., ZHANG H., ZENG J., HOU J., YANG Y., YAO T., KNIGHT R., CHU H. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14 (9), 2457, 2012.
  • 48. ROUSK J., B TH E., BROOKES P.C., LAUBER C.L., LOZUPONE C., CAPORASO J.G., KNIGHT R., FIERER N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME journal, 4 (10), 1340, 2010.
  • 49. HUBER H., STETTER K.O. Thermoplasmatales. The Prokaryotes: Volume 3: Archaea Bacteria: Firmicutes, Actinomycetes, 101, 2006.
  • 50. YAO H., GAO Y., NICOL G.W., CAMPBELL C.D., PROSSER J.I., ZHANG L., HAN W., SINGH B.K. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Applied and environmental microbiology, 77 (13), 4618, 2011.
  • 51. KENDALL M.M., BOONE D.R. The order methanosarcinales [M]. The prokaryotes. Springer. 244, 2006.
  • 52. MORI K., IINO T., SUZUKI K.-I., YAMAGUCHI K., KAMAGATA Y. Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Applied and environmental microbiology, 78 (9), 3416, 2012.
  • 53. HOLLISTER E.-B., ENGLEDOW A.-S., HAMMETT A.J.M., PROVIN T.L., WILKINSON H.H., GENTR T.J. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. The ISME journal, 4 (6), 829, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5d9fe9a1-83da-4c52-b1a0-8e13cd173144
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.