PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 08 |

Tytuł artykułu

Lupine embryo axes under salinity stress. II. Mitochondrial proteome response

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Germination is the first step of plant growth in plant life cycle. An embryonic radicle protruding the seed coat is the first part of plant which has direct contact with external environment including salt-affected soil. In embryo axes, mitochondria are the main energy producer. To understand better salinity impact on mitochondria functioning, this study was focused on the effect of NaCl stress onto mitochondria proteome. Mitochondria were isolated from yellow lupine (Lupine luteus L. ‘Mister’) embryo axes cultured in vitro for 12 h with 250 and 500 mM NaCl. Two-dimensional gel electrophoresis of mitochondrial proteins isolated from NaCl-treated axes demonstrated significant changes in proteins abundances as a response to salinity treatment. Twenty-one spots showing significant changes in protein expression profiles both under 250 and 500 mM NaCl treatment were selected for tandem mass spectrometry identification. This approach revealed proteins associated with different metabolic processes that represent enzymes of tricarboxylic acid cycle, mitochondrial electron transport chain, enzymes and proteins involved in mitochondria biogenesis and stresses response. Among proteins involved in mitochondria biogenesis, mitochondrial import inner membrane translocase, subunit Tim17/22, mitochondrial-processing peptidase subunit alpha-1, mitochondrial elongation factor Tu and chaperonins CPN60 were revealed. Finally, formate dehydrogenase 1 was found to accumulate in lupine embryo axes mitochondria under salinity. The functions of identified proteins are discussed in relation to salinity stress response, including salinity-induced PCD.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

08

Opis fizyczny

p.2383-2392,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan´, Poland
autor
  • Laboratory of Cytogenetics, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyn´ska 34, 60-479 Poznan´, Poland
  • Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan´, Poland

Bibliografia

  • Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulate. J Exp Bot 60:939–954
  • Ambard-Bretteville F, Sorin C, Rébeillé F, Hourton-Cabassa C, des Francs-Small CC (2003) Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress. Plant Mol Biol 52:1153–1168
  • Borek S,Ratajczak W, Ratajczak L (2006) Ultrastructural and enzymatic research on the role of sucrose in mobilization of storage lipids in germinating yellow lupine seeds. Plant Sci 170:441–452
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333
  • Chen S, Gollop N, Heuer B (2009a) Proteomic analysis of saltstressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot 60:2005–2019
  • Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W (2009b) Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol Biochem 47:407–415
  • David P, des Francs Small CC, Sévignac M, Thareau V, Macadré C, Langin T, Geffroy V (2010) Three highly similar formate dehydrogenase genes located in the vicinity of the B4 resistance gene cluster are differentially expressed under biotic and abiotic stresses in Phaseolus vulgaris. Theor Appl Genet 121:87–103
  • De Pinto MC, Locato V, de Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244
  • Giraud E, van Aken O, Uggalla V, Whelan J (2012) REDOX regulation of mitochondrial function in plants. Plant Cell Environ 35:271–280
  • Heller R (1953) Recherches sur la nutrition minerale des tissus végétaux cultivé in vitro. Ann Sci Nat Botanique et Biologie Végétale 14:1–223
  • Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, de Virville JD, Rémy R, des Francs-Small CC (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116:627–635
  • Jacoby RP, Millar AH, Taylor NL (2010) Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J Prot Res 9:6595–6604
  • Jacoby RP, Taylor NL, Millar AH (2011) The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci 16:614–623
  • Jung KH, Park JW (2011) Suppression of mitochondrial NADP(+)- dependent isocitrate dehydrogenase activity enhances curcumininduced apoptosis in HCT116 cells. Free Radic Res 45:431–438
  • Karnowsky MJ (1965) A formaldehyde: glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138
  • Katsuhara M (1997) Apoptosis-like cell death in barley roots under salt stress. Plant Cell Physiol 38:1091–1093
  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  • Lister R, Chew O, Lee M-N, Heazlewood JL, Clifton R, Parker KL, Millar AH, Whelan J (2004) A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction. Plant Physiol 134:777–789
  • Magni C, Scarafoni A, Herndl A, Sessa F, Prinsi B, Espen L, Duranti M (2007) Combined 2D electrophoretic approaches for the study of white lupin mature seed storage proteome. Phytochemistry 68:997–1007
  • Małecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48:687–698
  • Mechin V, Consoli L, Le Guilloux M, Damerval C (2003) An efficient solubilization buffer for plant proteins focused in immobilized pH gradients. Proteomics 3:1299–1302
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467
  • Møller IM, Sweetlove LJ (2010) ROS signaling: specificity is required. Trends Plant Sci 15:370–374
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250
  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Navrot N, Rouhier N, Gelhaye E, Jacquot J-P (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195
  • Oliver DJ (1981) Formate oxidation and oxygen reduction by leaf mitochondria. Plant Physiol 68:703–705
  • Prasad TK, Stewart CR (1992) cDNA clones encoding Arabidopsis thaliana and Zea mays mitochondrial chaperonin HSP60 and gene expression during seed germination and heat shock. Plant Mol Biol 18:873–885
  • Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12:2. doi:10.1186/1471-2229-12-2
  • Ruan CJ, Teixeira da Silva JA, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for salinized world. CRC Crit Rev Plant Sci 29:329–359
  • Shavrukov Y (2013) Salt stress or salt shock: which genes are we studying? J Exp Bot 64:119–127
  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208
  • Spurr AR (1969) A low visicosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43
  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904
  • Taylor NL, Rudhe C, Hulett JM, Lithgow T, Glaser E, Day DA, Millar AH, Whelan J (2003) Environmental stresses inhibit and stimulate different protein import pathways in plant mitochondria. FEBS Lett 547:125–130
  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Prot 4:1122–1133
  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252
  • Wang J, Li X, Liu Y, Zhao X (2010) Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. J Plant Physiol 167:1145–1151
  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An ‘‘Electronic Fluorescent Pictograph’’ Browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2(8):e718
  • Wojtyla Ł, Rucin´ska-Sobkowiak R, Kubala S, Garnczarska M (2013) Lupine embryo axes under salinity stress. I. Ultrastructural response. Acta Physiol Plant. doi:10.1007/s11738-013-1258-1
  • Yin G, Sun H, Xin X, Qin G, Liang Z, Jing X (2009) Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant Cell Physiol 50:1305–1318
  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5d6d4bde-4341-4d72-8674-de851d2ce1ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.