Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 29 | 2 |
Tytuł artykułu

Quantity of hydrophobic functional CH-groups - decisive for soil water repellency caused by digestate amendment

Treść / Zawartość
Warianty tytułu
Języki publikacji
Anaerobic digestates are used as organic fertilizers; however, they are suspected to interfere negatively with soils.To investigate the relevance of the anaerobic digestates composition on potential wettability and contact angle of the soil, we mixed in a laboratory experiment 30 m³ ha-1 of anaerobic digesta-tes derived from mechanically pre-treated substrates from maizeand sugar beet with a homogenized Cambic Luvisol. Fourier trans-form infrared-spectra and diffuse reflectance infrared Fouriertransform-spectra of particle intact and finely ground soil-anaerobic digestates-mixtures were analyzed to determine the quantities of hydrophobic functional groups in the soil-anaerobic digestates-mixtures that are used here as an indicator for the potential hydrophobicity. The anaerobic digestates application increased the amount of hydrophobic functional groups of the mixtures and reduced the wettability of the soil. However, for intact particle samples an up to threefold higher amount of hydrophobic groups was found as compared to the finely ground ones, indicating a dilution effect of mechanical grinding on the effectivity of the organic matter that is presumably located as a coating on mineral soil particles. For the particle intact samples, the intensity of hydrophobic functional groups bands denoting hydrophobic brickstones in organic matter is indicative for the actual wettability of the soil-anaerobic digestates-mixtures.
Słowa kluczowe
Opis fizyczny
  • Institute of Plant Nutrition and Soil Science, University of Kiel, Hermann-Rodewald 2, 24118 Kiel, Germany
  • Institute of Plant Nutrition and Soil Science, University of Kiel, Hermann-Rodewald 2, 24118 Kiel, Germany
  • Institute of Soil Landscape Research, Leibnitz Centre for Agricultural Landscape Research, Eberswalder 84, 15374 Muncheberg, Germany
  • Institute of Plant Nutrition and Soil Science, University of Kiel, Hermann-Rodewald 2, 24118 Kiel, Germany
  • Alburquerque J.A., de la Fuente C., Campoy M., Carrasco L., Najera I., Baixauli C., Caravaca F., Roldan A., Cegarra J., and Bernal M.P., 2012. Agricultural use of digestate for horticultural crop production and improvement of soil properties. European J. Agronomy, 43, 119-128.
  • Amelung W., Kaiser K., Kammerer G., and Sauer G., 2002. Organic carbon at soil particle surfaces – Evidence from X-ray photoelectron spectroscopy and surface abrasion. Soil Sci. Soc. Am. J., 66, 1526-1530.
  • Bachmann J., Woche S.K., Goebel M.-O., Kirkham M.B., and Horton R., 2003. Extended methodology for determining wetting properties of porous media. Water Res., 39, 1353-1359.
  • Bernier M.-H., Levy G.J., Fine P., and Borisover M., 2013. Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples. Geoderma, 209-210, 233-240.
  • Boyd S.A., Sommers L.E., and Nelson D.W., 1980. Changes in the Humic-acid fraction of soil resulting from sludge application. Soil Sci. Soc. Am. J., 44, 1179-1186.
  • Capriel P., Beck T., Borchert H., Gronholz J., and Zachmann G., 1995. Hydrophobicity of the organic-matter in arable soils. Soil Biology and Biochemistry, 27, 1453-1458.
  • Capriel P., Harter P., and Stephenson D., 1992. Influence of management on the organic-matter of a mineral soil. Soil Sci., 153,122-128.
  • Caravaca F., Lax A., and Albaladejo J., 2001. Soil aggregate stability and organic matter in clay and fine silt fractions in urban refuse-amended semiarid soils. Soil Sci. Soc. Am. J., 1235-1238.
  • Celi L., Schnitzer M., and Negre M., 1997. Analysis of carboxyl groups in soil humic acids by a wet chemical method, Fourier-transform infrared spectrophotometry, and solution-state carbon-13 nuclear magnetic resonance. A comparative study. Soil Sci., 162, 189-197.
  • Demyan M.S., Rasche F., Schulz E., Breulmann M., Muller T., and Cadisch G., 2012. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. European J. Soil Sci., 63,189-199.
  • Ellerbrock R.H. and Gerke H.H., 2004. Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy. European J. Soil Sci., 55, 219-228.
  • Ellerbrock R.H., Gerke H.H., Bachmann J., and Goebel M.O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Sci. Soc. Am. J., 69, 57-66.
  • Ellerbrock R.H. and Kaiser M., 2005. Stability and composition of different soluble soil organic matter fractions – evidence from delta C-13 and FTIR signatures. Geoderma, 128, 28-37.
  • Ellerbrock R.H., Gerke H.H., and Böhm C., 2009. In situ DRIFT characterization of organic matter compositions on soil structural surfaces. Soil Sci. Soc. Am. J., 73, 531-540.
  • Franco C.M.M., Clarke P.J., Tate M.E., and Oades J.M., 2000. Hydrophobic properties and chemical characterisation of natural water repellent materials in Australian sands. J. Hydrol., 231, 47-58.
  • Gerin P.A., Genet M.J., Herbillon A.J., and Delvaux B., 2003. Surface analysis of soilmaterial by X-ray photoelectron spectroscopy. European J. Soil Sci., 54, 589-603.
  • Gerzabek M.H., Pichlmayer F., Kirchmann H., and Haber-hauer G., 1997. The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden. European J. Soil Sci., 48, 273-282.
  • Gonzáles-Peñaloza F.A., Zavala L.M., Jordán A., Bellinfante N., Bárcenas-Moreno G., Mataix-Solera J., Granged A.J.P., Granja-Martins F.M., and Neto-Paixão H.M., 2013. Water repellency as conditioned by particle size and drying in hydrophobized sand. Geoderma, 209-210, 31-40.
  • Günzler H., and Böck H., 1990. IR-Spektroskopie. Verlag Chemie, Weinheim, Germany.
  • Haberhauer G. and Gerzabek M.H., 1999. Drift and transmission FT-IR spectroscopy of forest soils: an approach to deter-mine decomposition processes of forest litter. Vibrational Spectroscopy, 19, 413-417.
  • Hartmann P.M., 2008. Bodenphysikalische Eigenschaften, Benetzbarkeiten und Wasserhaushalt von Waldböden unter Flugascheeinfluss. Dissertation, University of Kiel, Kiel, Germany.
  • Hurraß J. and Schaumann G.E., 2006. Properties of soil organic matter and aqueous extracts of actually water repellent and wettable soil samples. Geoderma, 132, 222-239.
  • Leue M., Ellerbrock R.H., and Gerke H.H., 2010. DRIFT mapping of organic matter composition at intact soil aggregate surfaces. Vadose Zone J., 9, 317-324.
  • Leue M., Gerke H.H., and Ellerbrock R.H., 2013. Millimetre-scale distribution of organic matter composition at intact bio-pore and crack surfaces. European J. Soil Sci., 64, 757-769.
  • McDowell M.L., Bruland G.L., Deenik J.L., Grunwald S., and Knox N.M., 2012. Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma, 189, 312-320.
  • Morrison R.T. and Boyd R.N., 1983. Lehrbuch der organischen Chemie. Verlag Chemie, Weinheim, Germany.
  • Negre M., Vindrola D., Spera S., Ferraris L., and Gennari M., 2002. Effect of the chemical composition of soil humic acids on their viscosity, surface pressure, and morphology. Soil Sci., 167, 636-651.
  • Reeves J.B., Francis B.A., and Hamilton S.K., 2005. Specular reflection and diffuse reflectance spectroscopy of soils. Applied Spectroscopy, 59, 39-46.
  • Reeves J.B., McCarty G.W., and Reeves V.B., 2001. Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. J. Agric. Food Chemistry, 49, 766-772.
  • Révéille V., Mansuy L., Jarde E., and Garnier-Sillam T., 2003. Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Organic Geochemistry, 34, 615-627.
  • Schlichting E., Blume H.-P., and Stahr K., 1995. Bodenkundliches Praktikum: Eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land- und Forstwirte und für Geowissenschaftler. 2nd, revised edition, Vol. 81. Berlin, Wien: Blackwell-Wissenschafts-Verlag.
  • Sørensen P. and Møller H.B., 2009. Fate of nitrogen in pig and cattle slurries applied to the soil-crop system. In: Anaerobic digestion: Opportunities for agriculture and environment (Eds F. Adani et al.). DiProVe University of Milan, Milan, Italy.
  • Tatzber M., Stemmer M., Spiegel H., Katzlberger C., Haberhauer G., and Gerzabek M.H., 2007. An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environmental Chemistry Letters, 5, 9-12.
  • Täumer K., Stoffregen H., and Wessolek G., 2005. Determi-nation of repellency distribution using soil organic matter and water content. Geoderma, 125, 107-115.
  • Tremblay L. and Gagné J.P., 2002. Fast quantification of humic substances and organic matter by direct analysis of sediments using DRIFT spectroscopy. Analytical Chemistry, 74, 2985-2993.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.