PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 15 | 1 |

Tytuł artykułu

Southeastern myotis (Myotis austroriparius) roost selection in cypress-gum swamps

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Roost characteristics have been described for most North American bats, but debate continues over the ultimate mechanisms behind roost selection. Hypotheses include the need for a stable microclimate, protection from predators, proximity to foraging habitat, and availability of alternative roosts, among others. Our objective was to weigh evidence for hypotheses regarding selection of diurnal summer roosts using southeastern myotis (Myotis austroriparius) as a model. We used transect searches and radiotelemetry to locate 25 roosts at eight study sites across the Coastal Plain of Georgia, USA. We measured 22 characteristics of trees, at all occupied roosts and at randomly selected unoccupied trees. We evaluated 10 hypotheses using single-season occupancy models. The best supported model predicted bat presence based on the variables tree species, solid wood volume, and canopy cover. Because these characters affect heat retention and insolation, our results are consistent with the hypothesis that bats select roosts that provide a favorable microclimate. However, data on roost temperature and humidity are needed for a conclusive determination. Occupancy was greatest at the study area closest to caves occupied by southeastern myotis. Water tupelo trees appear to be an important resource for this species, although proximity to suitable caves also seems to affect presence and should be considered in conservation planning.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.133-141,ref.

Twórcy

autor
  • Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
  • Patuxent Wildlife Research Center, United States Geological Survey, Laurel, Maryland 20708, USA
  • Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA

Bibliografia

  • 1. D. R. Anderson , K. P. Burnham , and W. L. Thompson . 2000. Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management, 64: 912–923. Google Scholar
  • 2. R. M. R. Barclay , and A. Kurta . 2007. Ecology and behavior of bats roosting in tree cavities and under bark. Pp. 17–60, in Bats in forests: conservation and management ( M. J. Lacki , J. P. Hayes , and A. Kurta , eds.). Johns Hopkins University Press, Baltimore, Maryland, xvi + 352 pp. Google Scholar
  • 3. R. M. R. Barclay , P. A. Faure , and D. R. Farr . 1988. Roosting behavior and roost selection by migrating silver-haired bats (Lasionycteris noctivagans). Journal of Mammalogy, 69: 821–825. Google Scholar
  • 4. B. J. Betts 1998. Roosts used by maternity colonies of silverhaired bats in northeastern Oregon. Journal of Mammalogy, 79: 643–650. Google Scholar
  • 5. J. G. Boyles 2007. Describing roosts used by forest bats: the importance of microclimate. Acta Chiropterologica, 9: 297–303. Google Scholar
  • 6. R. M. Brigham , M. J. Vonhof , R. M. R. Barclay , and J. C. Gwilliam . 1997. Roosting behavior and roost-site preferences of forest-dwelling California bats (Myotis californicus). Journal of Mammalogy, 78: 1231–1239. Google Scholar
  • 7. K. P. Burnham , and D. R. Anderson . 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edition. Springer-Verlag, New York, xxvi + 496 pp. Google Scholar
  • 8. T. C. Carter 2006. Indiana bats in the Midwest: the importance of hydric habitats. Journal of Wildlife Management, 70: 1185–1190. Google Scholar
  • 9. B. D. Carver , and N. Ashley . 2008. Roost tree use by sympatric Rafinesque's big-eared bats (Corynorhinus rafinesquii) and southeastern myotis (Myotis austroriparius). American Midland Naturalist, 160: 364–373. Google Scholar
  • 10. M. K. Clark 2003. Survey and monitoring of rare bats in bottomland hardwood forests. Pp. 79–90, in Monitoring trends in bat populations of the United States and territories: problems and prospects ( T. J. O'Shea and M. A. Bogan , eds.). U.S. Geological Survey, Fort Collins, Colorado, viii + 284 pp. Google Scholar
  • 11. M. J. Clement , and S. B. Castleberry . 2011. Comparison of survey methods for Rafinesque's big-eared bats. Pp. 147–157, in Conservation and management of eastern big-eared bats: a symposium ( S. C. Loeb , M. J. Lacki , and D. A. Miller , eds.). U.S. Forest Service Southern Research Station, Clemson, South Carolina, 157 pp. Google Scholar
  • 12. D. G. Constantine 1966. Ecological observations on lasiurine bats in Iowa. Journal of Mammalogy, 47: 34–41. Google Scholar
  • 13. L. M. Cowardin , V. Carter , F. C. Golet , and E. T. Laroe . 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Department of the Interior, Washington, D.C., vi + 181 pp. Google Scholar
  • 14. B. Efron 1983. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association, 78: 316–331. Google Scholar
  • 15. M. J. Evelyn , D. A. Stiles , and R. A. Young . 2004. Conservation of bats in suburban landscapes: roost selection by Myotis yumanensis in a residential area in California. Biological Conservation, 115: 463–473. Google Scholar
  • 16. S. T. Gellman , and W. J. Zielinski . 1996. Use by bats of oldgrowth redwood hollows on the north coast of California. Journal of Mammalogy, 77: 255–265. Google Scholar
  • 17. S. V. Glass , and S. L. Zelinka . 2010. Moisture relations and physical properties of wood. Pp. 4–19, in Wood handbook: wood as an engineering material ( R. J. Ross , ed.). U.S. Department of Agriculture, Madison, Wisconsin, xi + 463 pp. Google Scholar
  • 18. G. Gooding , and J. R. Langford . 2004. Characteristics of tree roosts of Rafinesque's big-eared bat and southeastern bat in northeastern Louisiana. Southwestern Naturalist, 49: 61–67. Google Scholar
  • 19. W. Gu , and R. K. Swihart . 2004. Absent or undetected? Effects of non-detection of species occurrence on wildlifehabitat models. Biological Conservation, 116: 195–203. Google Scholar
  • 20. V. E. Hoffman 1999. Roosting and relative abundance of the southeastern myotis, Myotis austroriparius, in a bottomland hardwood forest. M.Sc. Thesis, Arkansas State University, Jonesboro, 35 pp. Google Scholar
  • 21. D. D. Hook 1984. Waterlogging tolerance of lowland tree species of the South. Southern Journal of Applied Forestry, 8: 136–149. Google Scholar
  • 22. D. W. Hosmer , and S. Lemeshow . 2000. Applied logistic regression, 2nd edition. Wiley, New York, xi + 392 pp. Google Scholar
  • 23. R. L. Johnson , and W. R. Beaufait . 1965. Water tupleo (Nyssa aquatica L.). Pp. 284–286, in Silvics of forest trees of the United States ( H. A. Fowells , ed.). U.S. Department of Agriculture, Washington, D.C., USA, 762 pp. Google Scholar
  • 24. C. Jones , and R. W. Manning . 1989. Myotis austroriparius. Mammalian Species, 332: 1–3. Google Scholar
  • 25. M. C. Kalcounis , and R. M. Brigham . 1998. Secondary use of aspen cavities by tree-roosting big brown bats. Journal of Wildlife Management, 62: 603–611. Google Scholar
  • 26. M. C. Kalcounis-Ruppell , J. M. Psyllakis , and R. M. Brigham . 2005. Tree roost selection by bats: an empirical synthesis using meta-analysis. Wildlife Society Bulletin, 33: 1123–1132. Google Scholar
  • 27. K. A. Keating , and S. Cherry . 2004. Use and interpretation of logistic regression in habitat selection studies. Journal of Wildlife Management, 68: 774–789. Google Scholar
  • 28. T. H. Kunz 1982. Roosting ecology of bats. Pp. 1–55, in Ecology of bats ( T. H. Kunz , ed.). Plenum Press, New York, xviii + 425 pp. Google Scholar
  • 29. T. H. Kunz , and L. F. Lumsden . 2003. Ecology of cavity and foliage roosting bats. Pp. 3–89, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, xix + 779 pp. Google Scholar
  • 30. J. Laake , and E. Rexstad . 2008. RMark -an alternative approach to building linear models in MARK. Pp. C1–C115, in Program MARK: a gentle introduction ( E. Cooch and G. C. White , eds.). Accessible at http://www.phidot.org/software/mark/docs/book/. Google Scholar
  • 31. D. I. MacKenzie , and J. A. Royle . 2005. Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology, 42: 1105–1114. Google Scholar
  • 32. D. I. MacKenzie , J. D. Nichols , G. B. Lachman , S. Droege , J. A. Royle , and C. A. Langtimm . 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83: 2248–2255. Google Scholar
  • 33. W. C. McComb , and R. E. Noble . 1981. Microclimates of nest boxes and natural cavities in bottomland hardwoods. Journal of Wildlife Management, 45: 284–289. Google Scholar
  • 34. M. A. Menzel , J. M. Menzel , W. M. Ford , J. W. Edwards , T. C. Carter , J. B. Churchill , and J. C. Kilgo . 2001. Home range and habitat use of male Rafinesque's big-eared bats (Corynorhinus rafinesquii). American Midland Naturalist, 145: 402–408. Google Scholar
  • 35. K. M. Mirowsky , P. A. Horner , R. W. Maxev , and S. A. Smith . 2004. Distributional records and roosts of southeastern myotis and Rafinesque's big-eared bat in eastern Texas. Southwestern Naturalist, 49: 294–298. Google Scholar
  • 36. S. J. Mullin , and R. J. Cooper . 2002. Barking up the wrong tree: climbing performance of rat snakes and its implications for depredation of avian nests. Canadian Journal of Zoology, 80: 591–595. Google Scholar
  • 37. N. J. D. Nagelkerke 1991. A note on a general definition of the coefficient of determination. Biometrika, 78: 691–692. Google Scholar
  • 38. S. Parsons , K. J. Lewis , and J. M. Psyllakis . 2003. Relationships between roosting habitat of bats and decay of aspen in the sub-boreal forests of British Columbia. Forest Ecology and Management, 177: 559–570. Google Scholar
  • 39. R. W. Perry , and R. E. Thill . 2007. Roost selection by male and female northern long-eared bats in a pine-dominated landscape. Forest Ecology and Management, 247: 220–226. Google Scholar
  • 40. R. W. Perry , R. E. Thill , and D. M. Leslie . 2008. Scaledependent effects of landscape structure and composition on diurnal roost selection by forest bats. Journal of Wildlife Management, 72: 913–925. Google Scholar
  • 41. L. Ruczynski , and W. Bogdanowicz . 2005. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieza Primeval Forest, eastern Poland. Journal of Mammalogy, 86: 921–930. Google Scholar
  • 42. D. C. Rudolph , H. Kyle , and R. N. Conner . 1990. Red-cockaded woodpeckers vs rat snakes: the effectiveness of the resin barrier. The Wilson Bulletin, 102: 14–22. Google Scholar
  • 43. D. Saenz , C. S. Collins , and R. N. Conner . 1999. A barkshaving technique to deter rat snakes from climbing redcockaded woodpecker cavity trees. Wildlife Society Bulletin, 27: 1069–1073. Google Scholar
  • 44. J. A. Scott 2011. Surveillance of two colonial cave roosting bat species in Georgia: the gray bat (Myotis grisescens) and southeastern bat (Myotis austroriparius). Final report to the Georgia Department of Natural Resources, Social Circle, Georgia, 15 pp. Google Scholar
  • 45. J. A. Sedgeley 2001. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. Journal of Applied Ecology, 38: 425–438. Google Scholar
  • 46. J. A. Sedgeley , and C. F. J. O'Donnell . 1999. Factors influencing the selection of roost cavities by a temperate rainforest bat (Vespertilionidae: Chalinolobus tuberculatus) in New Zealand. Journal of Zoology (London), 249: 437–446. Google Scholar
  • 47. Y. Siivonen , and T. Wermundsen . 2008. Characteristics of winter roosts of bat species in southern Finland. Mammalia, 72: 50–56. Google Scholar
  • 48. J. R. Speakman , and D. W. Thomas . 2003. Physiological ecology and energetic of bats. Pp. 430–490, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, xix + 779 pp. Google Scholar
  • 49. C. L. Stevenson 2008. Availability and seasonal use of diurnal roosts by Rafinesque's big-eared bat and southeastern myotis in bottomland hardwoods of Mississippi. M.Sc. Thesis, Mississippi State University, Starkville, 123 pp. Google Scholar
  • 50. M. J. Vonhof , and R. M. R. Barclay . 1996. Roost site selection and roosting ecology of forest dwelling bats in southern British Columbia. Canadian Journal of Zoology, 74: 1797–1805. Google Scholar
  • 51. C. H. Wharton 1978. The natural environments of Georgia. Georgia Department of Natural Resources, Atlanta, Georgia, 227 pp. Google Scholar
  • 52. B. K. Williams , J. D. Nichols , and M. J. Conroy . 2002. Analysis and management of animal populations. Academic Press, San Diego, California, xvii + 817 pp. Google Scholar
  • 53. C. K. R. Willis , C. M. Voss , and R. M. Brigham . 2006. Roost selection by forest-living female big brown bats (Eptesicus fuscus). Journal of Mammalogy, 87: 345–350. Google Scholar

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5d2a91cd-db17-4fa9-a587-102534f2b893
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.