PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Methane-oxidizing microorganism properties in Landfills

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bio-oxidation of methane in a landfill environment is important for mitigating global methane emissions into the atmosphere. In the present study, the characteristics of methane bio-oxidation and methane-oxidizing microorganisms were studied by enrichment cultivation using fresh and aged leachate (collected from Qizishan Landfill, Suzhou, China). Both aerobic and anaerobic methane oxidation were detected, methane oxidation capacities of the culture liquid were 5.24–7.26 µmol/mL/d under aerobic conditions and 4.41-3.70 µmol/mL/d under anaerobic conditions. The stoichiometry of anaerobic oxidation of methane (AOM) showed the complexity of AOM mechanisms in the leachate culture, with the types of sulfate-dependent, denitrification-dependent and iron-dependent AOM. The 16S rRNA gene sequence analysis and SEM analysis results showed that the genus Methylocystis was the dominant bacteria in aerobic cultures (relative abundance 35.96–78.37%). Genus Moheibacter (41.38%) and Cupriavidus (43.08%) were the most dominant taxa in anaerobic cultures, with aerobic methanotrophs Methylocaldum and Methylocystis in low abundance, and no anaerobic methane-oxidizing archaea (ANME) was found. Further research is needed to confirm whether aerobic methanotrophs can oxidize methane under anaerobic conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3809-3818,fig.,ref.

Twórcy

autor
  • College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
  • National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, China
  • Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
autor
  • College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
autor
  • College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
  • National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, China
autor
  • College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
  • National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, China
autor
  • College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
  • National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, China
autor
  • State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, China

Bibliografia

  • 1. CLOY J.M., SMITH K.A. Greenhouse gas sources and sinks. Encyclopedia of the Anthropocene, 2, 391, 2018.
  • 2. JIANG X., MIRA D., CLUFF D.L. The combustion mitigation of methane as a non-CO₂ greenhouse gas. Progress in Energy and Combustion Science, 66 (5), 176, 2018.
  • 3. IPCC (Intergovernmental Panel on Climate Change). Emissions Scenarios, Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK, 2000.
  • 4. FENG S., LEUNG A.K., NG C.W.W., LIU H.W. Theoretical analysis of coupled effects of microbe and root architecture on methane oxidation in vegetated landfill covers. Science of The Total Environment, 599-600, 1954-1964, 2017.
  • 5. GEBERT J., GROENGROEFT A., PFEIFFER E. Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biology and Biochemistry, 43 (9), 1759, 2011.
  • 6. YARGICOGLU E.N., REDDY K.R. Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study. Journal of Environmental Management, 193, 19, 2017.
  • 7. SADASIVAM B.Y., REDDY K.R. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars. Journal of Environmental Management, 158, 11, 2015.
  • 8. MEI J., ZHEN G.Y., ZHAO Y.C. Bio-oxidation of Escape Methane from Landfill Using Leachate-Modified Aged Refuse. Arabian Journal for Science and Engineering, 41, 2493, 2016.
  • 9. HAN D., ZHAO Y.C., XUE B.J., CHAI X.L. Effect of bio-column composed of aged refuse on methane abatement – a novel configuration of biological oxidation in refuse landfill. Journal of Environmental Sciences-China, 22, 769, 2010.
  • 10. MEI J., WANG L., HAN D., ZHAO Y.C. Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation. Journal of Environmental Sciences-China, 23, 868874, 2011.
  • 11. KARAKURT I., AYDIN G., AYDINER K. Sources and mitigation of methane emissions by sectors, A critical review. Renewable Energy, 39, 40, 2012.
  • 12. HE Y., LI M., PERUMAL V., FENG X., FANG J., XIE J., SIEVERT S.M., WANG F. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nature Microbiology, 1 (6), 16035, 2016.
  • 13. SMITH R.L., HOWES B.L., GARABEDIAN S.P. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests. Applied and Environmental Microbiology, 57, 1997, 1991.
  • 14. TEICHERT B.M.A., CHEVALIER N., GUSSONE N. Sulfate-dependent anaerobic oxidation of methane at a highly dynamic bubbling site in the Eastern Sea of Marmara (Çinarcik Basin). Deep Sea Research Part II: Topical Studies in Oceanography, Available online, 2017.
  • 15. XU S., LU W.J., MUHAMMAD F.M., LIU Y.T., GUO H.W., MENG R.H., WANG H.T. New molecular method to detect denitrifying anaerobic methane oxidation bacteria from different environmental niches. Journal of Environmental Sciences, 65, 367, 2018.
  • 16. LASH G.G. Pyritization induced by anaerobic oxidation of methane (AOM) – An example from the upper devonian shale succession, western New York, USA. Marine and Petroleum Geology Part A, 68, 520, 2015.
  • 17. MA R., HU Z., ZHANG J., MA H., JIANG L., RU D. Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process. Bioresource Technology, 235, 211, 2017.
  • 18. ETTWIG K.F., ZHU B.L., SPETH D., KELTJENS J.T., JETTEN M.S.M., KARTAL B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences, 113 (45), 12792, 2016.
  • 19. SCHOLL M.A., COZZARELLI I.M., CHRISTENSON S.C. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate. Journal of Contaminant Hydrology, 86, 239, 2006.
  • 20. RANSOM-JONES E., MCDONALD J.E. Draft Genome Sequence of Clostridium sp. Strain W14A Isolated from a Cellulose-Degrading Biofilm in a Landfill Leachate Microcosm. Genome Announcements, 4 (5), 00985, 2016.
  • 21. HAN D., SHI F., CHAI X.L., CHEN H., ZHAO Y.C. A new way of natural mitigation of methane in a refuse landfill, Anaerobic and aerobic co-oxidation. Acta Scientiae Circumstantiae, 31 (4) , 791, 2011 [In Chinese].
  • 22. MILUCKA J., FERDELMAN T.G., POLERECKY L., FRANZKE D., WEGENER G., SCHMID M., LIEBERWIRTH I., WAGNER M., WIDDEL F., KUYPERS M.M.M. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 491, 541, 2012.
  • 23. MCGLYNN S.E., CHADWICK G.L., KEMPES C.P., ORPHAN V.J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 526, 531, 2015.
  • 24. WEGENER G., KRUKENBERG V., RIEDEL D., TEGETMEYER H.E., BOETIUS A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria, Nature, 526, 587, 2015.
  • 25. NORÐI K.À., THAMDRUP B., SCHUBERT C.J. Anaerobic oxidation of methane in an iron rich Danish freshwater lake sediment. Limnology and Oceanography, 58 (2), 546, 2013.
  • 26. TORRES N.T., OCH L.M., HAUSER P.C., FURRER G., BRANDL H., VOVOGINA E., STURM M., BÜRGMANN H., MÜLLER B. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Environmental Science Processes & Impacts, 16 (4), 879, 2014.
  • 27. AMOS R.T., BEKINS B.A., COZZARELLI I.M., COZZARELLI I.M., KIRSHTEIN J.D., JONES E.J.P., & BLOWES D.W. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. Geobiology, 10 (6), 506, 2012.
  • 28. CHANG Y.H, CHENG T.W., LAI W.J., TSAI W.Y., SUN C.H., LIN L.H., WANG P.L. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan. Environmental Microbiology, 14 (4), 8958, 2012.
  • 29. ZHAO Y.C., LOU Z.Y. Pollution control and resource recovery: municipal solid wastes at landfill, UK: Elsevier Publisher Inc, 2016.
  • 30. COSTELLO A.M., LIDSTROM M.E. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Applied and Environmental Microbiology, 65 (11), 5066, 1999.
  • 31. STRALISPAVESE N., BODROSSY L., REICHENAUER T.G., WEILHARTER A. A Sessitsch 16S rRNA based T-RFLP analysis of methane oxidising bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils, Applied Soil Ecology, 31 (3), 251, 2006.
  • 32. ONI O.E., FRIEDRICH M.W. Metal Oxide Reduction Linked to Anaerobic Methane Oxidation. Trends in Microbiology, 25 (2), 88, 2017.
  • 33. MALYAN S.K., BHATIA A., KUMAR A., GUPTA D.K., SINGH R. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Science of The Total Environment, 572, 874, 2016.
  • 34. SCHELLER S., YU H., CHADWICK G.L., MCGLYNN S.E.,ORPHAN V.J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 351 (6274), 703, 2016.
  • 35. APHA; Standard Methods for the Examination of Water and Waste Water. Washington, DC, 1998.
  • 36. LOU, Z.Y., ZHAO, Y.C., YUAN, T., SONGY., CHEN H.L., ZHU N.W., HUANG R.H. Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages. Science of The Total Environment, 407 (10), 3385, 2009.
  • 37. RAGHOEBARSING A.A., POL A., PAS-SCHOONEN K.T., SMOLDERS A.J.P., ETTWIG K.F., RIJPSTRA W.I.C., SCHOUTEN S., DAMSTE J.S.S., CAMP H.J.M.O., JETTEN M.S.M., STROUS M. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440 (7086), 918, 2006.
  • 38. ZHAO T.T., ZHANG L.J., ZHANG Y.R. Characterization of Methylocystis strain JTA1 isolated from aged refuse and its tolerance to chloroform. Journal of Environmental Sciences, 25 (4), 770, 2013.
  • 39. ZHANG R.G., TAN X., ZHAO X.M., DENG J., LV J. Moheibacter sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from sediment, and emended descriptions of Empedobacter brevis, Wautersiella falsenii and Weeksella virosa. International journal of systematic and evolutionary microbiology, 64 (5), 1481, 2014.
  • 40. VANDAMME P., COENYE T. Taxonomy of the genus Cupriavidus: a tale of lost and found. International journal of systematic and evolutionary microbiology, 54 (6), 2285, 2004.
  • 41. CERRO C., GARCÍA J.M., ROJAS A., TORTAJADA M., RAMÓN D., GALÁN B., PRIETO M.A., GARCÍA J.L. Genome sequence of the methanotrophic poly-beta-hydroxybutyrate producer Methylocystis parvus OBBP. Journal of Bacteriology, 194 (20), 5709, 2012.
  • 42. MARTINEZ-CRUZ K., LEEWIS M., HERRIOTT I.C., SEPULVEDA-JAUREGUI A., ANTHONY K.W., THALASSO F., LEIGH M.B. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Science of The Total Environment, 607-608, 23, 2017.
  • 43. OSWALD K., MILUCKA J., BRAND A., HACH P., LITTMANN S., WEHRLI B., KUYPERS M., SCHUBERT C. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnology and Oceanography, 61, S101, 2016.
  • 44. HE R., WOOLLER M.J., POHLMAN J.W., CATRANIS C., QUENSEN J., TIEDJE J.M., LEIGH M.B. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environmental Microbiology, 14 (6), 1403, 2012.
  • 45. HERNANDEZ M.E., BECK D.A.C., LIDSTROM M.E., LUDMILA C. Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. Peerj, 3 (2), e801, 2015.
  • 46. SVENNING M.M., HESTNES A.G., WARTIAINEN I., STEIN L.Y., KLOTZ M.G., et al. Genome sequence of the Arctic Methanotroph Methylobacter tundripaludum SV96. Joural of Bacteriology, 193 (22), 6418, 2011.
  • 47. KALYUZHNAYA M.G., LAMB A.E., MCTAGGART T.L., et al. Draft genomes of gammaproteobacterial methanotrophs isolated from Lake Washington sediment. Genome Announc, 3 (2), e00103, 2015.
  • 48. RICHARD S.H., THOMAS E.H. Methanotrophic Bacteria. Microbiological Reviews, 439, 1996.
  • 49. KNITTEL K., LÖSEKANN T., BOETIUS A. Diversity and Distribution of Methanotrophic Archaea at Cold Seeps. Applied & Environmental Microbiology, 71 (1), 467, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5d0f18a3-6a9b-4973-b32a-720e471c01a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.