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Summary:  In the article, the results of the study on 
helical gear load capacity increase are represented, and 
one of the most important criteria of transmission 
performance is introduced – it is the contact tightness 
coefficient of active lateral surfaces of gear teeth. The 
coefficient characterizes the stressed state of helical 
gear teeth. To build a mathematical model of the teeth 
stressed state, analytical dependences were derived that 
uniquely identify the theoretical initial surfaces of 
helical gears.  
The results of the comparative analysis confirm the 
direct dependence of gear train load capacity on the 
contact tightness coefficient.  
Key words:  helical gear, contact tightness coefficient, 
load capacity criterion, stressed state, objective 
function, optimization, synthesis. 

INTRODUCTION 

During the design of crossed-axis helical 
gears, a forced deviation from the hyperboloid 
base of initial surfaces affected operating 
characteristics of such transmissions, as 
compared to their theoretical potential [11]. 
Substantial improvement of technical 
characteristics and transmission 
competitiveness are possible in case of the 
hyperbolical axoid as initial surfaces, or 
surfaces that are less deviated from hyperbolic 
axoids [16, 11, 10, 8]. The important task 
arising during the gear design is the defining 

of geometric parameters values of original 
profile that could ensure the best value of the 
objective function, taking into account the 
qualitative parameters of the performance and 
load capacity of gear [17, 18, 26]. During the 
helical gear design, the load distribution in 
tooth flank and the size of contact area have to 
be studied for defining the allowable 
contacting, bending and shearing stresses in 
tooth.   

In machine science, the gear train 
performance is assessed using quality 
indicators [11, 15] – the criteria characterizing 
local kinematic and hydrodynamic phenomena 
in the teeth contact patch, as well as the load 
capacity of transmissions. 

Contact stress eventually results in tooth 
fatigue breakdown in the contact patch. This 
destruction becomes apparent in surface 
chipping.  

We introduce a contact tightness 
coefficient ( pK ) [11, 20, 23], which 

characterizes the stress state of helical gear 
tooth:  

 

z
p S
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where: S  – surface area of instant 
contact, zS – area of the lateral surface of 
helical hyperboloid gear tooth, pK  coefficient 

is, to a certain extent, an analogue of SK  
coefficient of a comparative stressed state of 
gear teeth [11]. 

The physical meaning of the contact 
tightness coefficient: increase (decrease) of  

pK  means an increase (decrease) of teeth load 

capacity and contact strength and, 
consequently, increase (decrease) in the entire 
gear durability. 

Theoretical initial surfaces of helical 
gears are one-sheeted hyperboloid of 
revolution the equations of which are the 
following:   

 
22222

mmmmm rztgyx   ,  2,1m  .     (2) 
 

Necessary and sufficient set of 
constraints is applied to geometric parameters 
of surfaces defined by equation (2): 
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where: wa  is the distance between axes, 
  is crossing angle of gears, 0u  is reduction 
ratio, 21 r,r  are radiuses of the neck of initial 
hyperboloids, 21  ,  are angles of slope of 
hyperboloid generating lines (Fig. 1). 

Solving the system (3) with respect to the 
geometric parameters of one-sheeted 
hyperboloids 21 ,  , 21 , rr , the following 
dependences uniquely defining the theoretical 
initial surfaces of helical gears: 
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In this paper, the hypothesis is assumed 

that a real contact patch of helical gears, with 
sufficient accuracy for solving practical 
problems, can be represented by an ellipse 
(Fig. 2, a). This hypothesis is supported by 
recent studies [11, 7, 13]. The size of an 
elliptical contact patch depends on the 
geometrical parameters of the contacting 
surfaces, the resilience moduli of gear material 
and normal load on gear teeth. 

 
 

 
Fig. 1. Surfaces of an one-sheeted hyperboloid of revolution 
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Normal load nP  is distributed over the 
entire ellipse area – area of instantaneous 
contact (Fig. 2, a), that has an area defined 
according to the formula: 

 
abS  ,                       (5) 

 
where: a  is a major semiaxis of the 

contact ellipse, b is a minor semiaxis of the 
contact ellipse. 

The equation of the ellipse is  
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Pressure at any point of elliptical area is 

proportional to the z  – applicate of the 
stressed state semi-ellipsoid (Fig. 2, b): 
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where: c,b,a  are semi-axes of the 

stressed state ellipsoid. 
On the other hand, the area zS  of a 

helical tooth flank of a hyperboloid gear is 
defined by the formula: 

 
az LLS  ,                             (8) 

 
where: L  is a tooth length (length of a 

one-sheet hyperboloid generating line), aL  is 
an arc length of the lateral surface tooth 
profile.   

Tooth length L  is defined by the formula 
(Fig. 3, а) 

 
ncos

H
L


 .                            (9) 

 
Since the equation of a one-sheet 

hyperboloid of rotation looks as follows (2), 
the height of the hyperboloid (gear rim width) 
will be equal to:  

 
2

1
2 rr2ctgH tn   ,                 (10) 

 
where: H  is a rim width, 1r  is the radius 

of  hyperboloid neck, tr  is the radius of the 
hyperboloid in the butt,  n  is the slope angle 
to rotation axis (Fig. 3, a). 

The arc length aL  depends on the radius 
of the profile and the tooth height (Fig. 3, b) 
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Thereby, the contact tightness coefficient 

can be defined according to the formula: 
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Fig. 2.  The elliptical contact patch of lateral surface of a helical gear (a), stress distribution on Hertz’s diagram at the 
pitch point of helical pair (b) 
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Fig. 3. For the definition of tooth length L  (а)  and  arc length aL (b) 

For the purpose of defining major and 
minor semiaxes of the instantaneous contact 
ellipse (Fig. 2.а), generalized Hooke's law and 
Winkler’s hypothesis are used [21, 1]. 
Therefore, the function of contact 
deformations is defined as follows: 

 
)y,x()y,x(B)y,x(D H ,     (13) 

 
where:  y) B(x,  is a resilience coefficient 

of the mating pair of teeth, mm3/N (variable), 
)y,x(H  is a contact stress function. 

The contact stress function of helical 
gear teeth will be defined below. 

Using (7), the contact stress at any point 
within the elliptical contour is defined through 
the maximum (normal) stress in the area 
center:   
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The contact deformation function will 

look as follows: 
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Normal stress nP will be defined through 
the stress Р at any interior point of an elliptical 
contour as follows: 
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where: the volume of semi-ellipsoidal 

compression is the following: 
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Substituting the value of the integral (17)  

into (16), the expression for the maximum 
normal contact stress in the area center will 
look as follows: 
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It is evident from (18) that the maximum 

stress max  in the elliptical area center of 
resilient contact is 1.5 times greater than the 
average stress set by the formula:  
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Contact stress is not a linear function of 
the normal load nP , and with an increase of nP  
it grows slower. This can be explained by the 
fact that under the load nP , the local resilient 
deformation of a small volume of metal takes 
place in the contact zone.  As a result, the 
contacting teeth approach each other. The 
convergence occurs so that the teeth points, 
which lie outside the deformation zone, move 
by a certain value along the z -axis. Therefore, 
with increase of nP , a  and b  increase and the 
area of instantaneous contact patch also grows 
(5), and hence contact stresses reduce. 

For the purpose of defining the 
coefficient B  as constant in equation (13), the 
actual diagram of stresses distribution 

)y,x(H over the elliptical contact patch (Fig. 
2, b) will be replaced with diagram of mean 
stresses s  (20) equally distributed over the 
given contact patch.    

Then, (18) takes the following form: 
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After replacing the variable resilience 

coefficient B (x, y) in equation (13) with 
constant  B, the equation looks as follows:  
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For the purpose of using the function 

(21), it is necessary to define the expression of 
resilience coefficient B. Therefore, first we 
will use the dependence which characterizes 
the relationship between the resilient 
movements (deformations) D  of teeth and 
stresses arising in them, namely: 

 
n

smm KD  ,                    (22) 
 
where: mK is dimensional parameter, 

mm/MPa, n  is a power exponent, equal to 
0,7...0,8 [13, 24] (with regard to the point 
contact of objects we should proceed from the 
exponent n  = 0,7). 

Applied to the mating pair of teeth of 
gear and wheel, contact stress equation, based 

on the generalized Hooke's law, will look as 
follows [1]:  
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where: 
y
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x
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L

L 
   is relative 

deformations, zxL , zyL  are absolute 

deformations, aLx 2 , bLy 2  are lengths of 

contact ellipse axes, 1 , 2  are Poisson 
coefficients, 1E , 2E  are resilience moduli of 
teeth materials. 

Taking into account the equality 
zyzx LL   , we obtain the expression 

yzyxzx LL   , basing on which, in case of 

aLx 2 , bLy 2 , 
b

a ( is an ellipticity 

coefficient [6]), the next formulas will be 
obtained: 
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(23), they will look as follows: 
 































.
)(

E)(aE)(

,
)(

E)(aE)(

zx

zx

2
2

22
2
2

22
2

2
1

11
2
1

11
1

141

141

















       (24) 

         
Based on the dependence (22), when 
 0.7  n  and taking into account the expression 
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(24), two equations of resilient displacements 
of teeth mating pair will be defined as follows: 

 














































.
)(

E)(a
KKD

,
)(

E)(a
KKD

.

.

.

.

70

2
2

22
2

70
222

70

2
1

11
1

70
111

14

14







    (25) 

 
From (25) and taking into account that 

)/(2aLD zx  2 , the dependence of 
dimensional parameters will be defined as 
follows: 
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Next, based on the relation (19) and 

expressions (26), the equations of contact 
resilience of gear and wheel teeth will be 
defined as follows: 
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Taking into account the size of elliptical 

contact patch (5), equal to abS  , and 

relations (27). The resilience coefficient will 
be defined as follows: 
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According to the expression (28), the 

function (21) of teeth contact deformation will 
take the final form: 
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On the basis of (16) and (29), taking into 

account (15), the equation that characterizes 
the stressed deformed state of the teeth mating 
pair will look as follows: 
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This equation will be transformed to the 

following:  
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Exponentiating the left and right parts of 

the last equation to power 10/21, the small 
semiaxis of the ellipse will be defined:  
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Based on dependence (32), the major 

semiaxis of the elliptical contact patch will be 
defined as follows:  
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Then, (5) will be transformed to:  
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And finally, taking into account (34), the 

contact tightness coefficient (12) will look as 
follows:   
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As a matter of practice, in the 
calculations: 3021 ,  , and EEE  21 . 
Based on this, the equation (32) will be 
simplified: 
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Next, the influence of gear parameters on 

contact tightness coefficient (36) will be 
studied (Fig. 4 – Fig. 7). 

 
 

 

Fig. 4. Dependency pK  ( contact tightness coefficient)  

on S  (contact area of the lateral tooth surface) 

 

 

Fig. 5. Dependency pK  (contact tightness coefficient) 

on (ellipticity) 
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Fig. 6. Dependency pK  (contact tightness coefficient) 

on NP  (normal stress in nominal contact point) 

 

 

Fig. 7. Dependency pK  (contact tightness coefficient) 

on k  (pressure angle in nominal contact point) 

In Fig. 4–7, it is evident that increasing 
NP  (normal stress in nominal contact point) or 

increasing S (instantaneous contact patch 
area), which can be the consequence of 
increasing in NP , the value of contact tightness 
coefficient is increased and, therefore, the load 
capacity increases, and the conditions of oil-
film wedge formation are improved, friction 
decreases, transmission performance 
improves, contact and bending stress 
decreases.  

Therefore, it can be justly concluded that 
gear load capability is in direct dependence on 
the contact tightness coefficient, which should 
be classified as the criterion for selecting of 
tooth rim parameters from the point of view of 
the best durability characteristics. 

CONCLUSIONS 

1. The main factors affecting the 
performance and competitiveness of crossed-
axis helical gear were studied. Theoretical 
research on building up a mathematical model 
of helical gear teeth loaded state was 
conducted.   

2. Analytical dependences of contact 
tightness coefficient on load factors and 
geometric parameters of original profile and 
original hyperboloid surfaces were defined. 
The considered factor belongs to the main 
group of criteria included in the objective 
function that is used for the multi-criteria 
synthesis of a new initial gear profile. 

3. Analytical dependences were derived 
that uniquely identify the theoretical initial 
surfaces of helical gears.   

4.  With the aim of defining a correlation 
dependence between performance criteria, a 
multiple correlation analysis of qualitative 
variable was conducted. This will enable 
setting up a close correlation between the 
contact tightness coefficient and load capacity 
and teeth contact strength.  The obtained 
results of the comparative analysis confirmed 
the accuracy of the developed theory and the 
adequacy of the proposed mathematical 
models. 
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КРИТЕРИЙ НАГРУЗОЧНОЙ СПОСОБНОСТИ 
ЗУБЧАТЫХ ВИНТОВЫХ ПЕРЕДАЧ 

Павел Носко, Валентин Шишов, Денис Ратов, 
Павел Филь,  Андрей Лысенко  

А н н о т а ц и я .  Представлены результаты 
исследований повышения нагрузочной способности 
и введен в рассмотрение один из важных критериев 
работоспособности передач — коэффициент 
плотности прилегания активных боковых 
поверхностей зубьев винтовых передач, 
характеризующий напряженное состояние зубьев 
винтовой передачи. Получены аналитические 
зависимости, однозначно определяющие 
теоретические начальные поверхности винтовых 
передач.  
Результатами сравнительного  анализа 
подтверждена прямая зависимость несущей 
способности зубчатой передачи от рассмотренного 
коэффициента плотности прилегания. 
Ключевые  слова :  винтовая передача, 
коэффициент плотности прилегания, критерий 
нагрузочной способности, целевая функция, 
оптимизация, синтез, начальные поверхности, 
аксоиды. 


