TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE — 2014, Vol. 14, No.1, 182-190

Helical gear train load capacity criterion

Pavel Noskol,|Valentin Shyshov!,

Denis Ratov!, Pavel Fill, Andrii Lysenko?

Volodymyr Dahl East Ukrainian National University,
Molodizhny bl., 20a, Lugansk, 91034, Ukraine,
e-mail: mash_ved@snu.edu.ua, mashved@mail.ru
%Luxoft, 225 West 34th St, Ste. 1706/1707, New York, NY 10122
e-mail: andriy.Lysenko@ubs.com

Received January 14.2014: accepted February 05.2014

Summary: In the article, the results of the study on
helical gear load capacity increase are represented, and
one of the most important criteria of transmission
performance is introduced — it is the contact tightness
coefficient of active lateral surfaces of gear teeth. The
coefficient characterizes the stressed state of helica
gear teeth. To build a mathematical model of the teeth
stressed state, analytical dependences were derived that
uniquely identify the theoretical initial surfaces of
helical gears.

The results of the comparative analysis confirm the
direct dependence of gear train load capacity on the
contact tightness coefficient.
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INTRODUCTION

During the design of crossed-axis helical
gears, aforced deviation from the hyperboloid
base of initial surfaces affected operating
characteristics of such transmissions, as
compared to their theoretical potential [11].
Substantial  improvement  of  technical
characteristics and transmission
competitiveness are possible in case of the
hyperbolical axoid as initial surfaces, or
surfaces that are less deviated from hyperbolic
axoids [16, 11, 10, 8]. The important task
arising during the gear design is the defining

of geometric parameters values of origina
profile that could ensure the best value of the
objective function, taking into account the
qualitative parameters of the performance and
load capacity of gear [17, 18, 26]. During the
helical gear design, the load distribution in
tooth flank and the size of contact area have to
be studied for defining the alowable
contacting, bending and shearing stresses in
tooth.

In machine science, the gear train
performance is assessed using quality
indicators [11, 15] — the criteria characterizing
local kinematic and hydrodynamic phenomena
in the teeth contact patch, as well as the load
capacity of transmissions.

Contact stress eventually results in tooth
fatigue breakdown in the contact patch. This

destruction becomes apparent in surface
chipping.

We introduce a contact tightness
coefficient (k,) [11, 20, 23], which

characterizes the stress state of helical gear
tooth:

K. =

S
p gi (1)
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where: S — surface area of instant
contact, S,— area of the latera surface of

helical hyperboloid gear tooth, K, coefficient

is, to a certain extent, an analogue of Kg

coefficient of a comparative stressed state of
gear teeth [11].

The physical meaning of the contact
tightness coefficient: increase (decrease) of
K, means an increase (decrease) of teeth load

capacity and contact strength  and,
consequently, increase (decrease) in the entire
gear durability.

Theoretical initial surfaces of helical

gears are one-sheeted hyperboloid of
revolution the equations of which are the
following:

X2+ Y2 - 192t =12, (m=12). (2)

Necessary and sufficient set of
constraints is applied to geometric parameters
of surfaces defined by equation (2):

|’1 + r2 = a\N,
ﬁl + ﬁZ =7
3
rctgf; = r,ctgp;, ®

_ r.cosp;
r,CoSf,

Fig. 1. Surfaces of an one-sheeted hyperboloid of revolution

where: a, is the distance between axes,
y is crossing angle of gears, u, is reduction
ratio, r,r, are radiuses of the neck of initial
hyperboloids, g, s, are angles of Sope of
hyperboloid generating lines (Fig. 1).

Solving the system (3) with respect to the
geometric  parameters  of  one-sheeted
hyperboloids g,, #,, r,,1,, the following
dependences uniquely defining the theoretical
initial surfaces of helical gears:
pomwog 25

Upsiny

B, =y —arctg ,
1+uq cosy

(4)

(ug +cosy )ugy

rl &S ’
uZ + 2u, cosy +1

1+ugcosy

r2—

" .
uZ + 2u, cosy +1

In this paper, the hypothesis is assumed
that a real contact patch of helical gears, with
sufficient accuracy for solving practical

problems, can be represented by an €llipse
(Fig. 2, a@). This hypothesis is supported by
recent studies [11, 7, 13]. The size of an
elliptical contact patch depends on the
geometrical parameters of the contacting
surfaces, the resilience moduli of gear material
and normal load on gear teeth.
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Normal load P, is distributed over the
entire ellipse area — area of instantaneous
contact (Fig. 2, @), that has an area defined
according to the formula:

S= b, (5)

where: a is a mgor semiaxis of the
contact elipse, bis a minor semiaxis of the
contact ellipse.

The equation of the éllipseis

2 2

%+ty)_2:1. (6)
Pressure at any point of elliptical areais

proportional to the z — applicate of the

stressed state semi-ellipsoid (Fig. 2, b):

2 2 2

Xs y® oz

S+ + =1, 7

a® p® ¢ (7
where. a,b,c are semi-axes of the

stressed state ellipsoid.
On the other hand, the area s, of a

helical tooth flank of a hyperboloid gear is
defined by the formula:

S, =LL,, (8)

where: L is a tooth length (length of a
one-sheet hyperboloid generating line), L, is
an arc length of the lateral surface tooth
profile.

Tooth length L is defined by the formula
(Fig. 3, a)

N7 g

a

L= H .
cosf3,

9)

Since the equation of a one-sheet
hyperboloid of rotation looks as follows (2),
the height of the hyperboloid (gear rim width)
will be equal to:

H =2ctgf 2 -1,

where: H isarim width, r, isthe radius
of hyperboloid neck, r, is the radius of the
hyperboloid in the butt, s, isthe slope angle
to rotation axis (Fig. 3, a).

The arc length L, depends on the radius
of the profile and the tooth height (Fig. 3, b)

onfrfSia] )

(10)

Pa Pa

Thereby, the contact tightness coefficient
can be defined according to the formula:

_ mabcosf,

2ctgB, 12 -1 pa(arcsi r{w] —arcsi r(ya‘]]
Pa Pa

B mabsin g,

2pa\ 12 -1 {arcsi n(h""eraj -
Pa

>

Fig. 2. Thedlliptical contact patch of lateral surface of ahelical gear (a), stress distribution on Hertz's diagram at the

pitch point of helical pair (b)



HELICAL GEAR TRAIN LOAD CAPACITY CRITERION 185

1
1
I
|
|
I
I
I
|
I
I
I
|
|
Y

A

Fig. 3. For the definition of tooth length L (a) and arc length L, (b)

For the purpose of defining maor and
minor semiaxes of the instantaneous contact
ellipse (Fig. 2.a), generalized Hooke's law and
Winkler's hypothesis are used [21, 1].

Therefore, the function of contact
deformations is defined as follows:
D(x,y)=B(X,Y)ou(Xy), (13)

where: B(x,y) is a resilience coefficient
of the mating pair of teeth, mm*/N (variable),
oy (x,y) isacontact stress function.

The contact stress function of helical
gear teeth will be defined below.

Using (7), the contact stress at any point
within the éliptical contour is defined through
the maximum (normal) stress in the area
center:

2 2
on :P:Pmészax 1—[2} —(%J . (19

The contact deformation function will
look asfollows:

(15)

Normal stress P, will be defined through

the stress P at any interior point of an elliptical
contour as follows:

R, = [Pds =22 [ s,
s C s

(16)

where: the volume of semi-ellipsoida
compression is the following:

_[ZdS=g7rabC.
S 3

(17)

Substituting the value of the integral (17)
into (16), the expression for the maximum
normal contact stress in the area center will
look asfollows:

3P 15P
Pmax:O'maxzzﬂ_anb: Sﬂ . (18)

It is evident from (18) that the maximum
stress o iN the dliptical area center of
resilient contact is 1.5 times greater than the
average stress set by the formula:

(19)
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Contact stress is not a linear function of
the normal load P, , and with an increase of P,

it grows slower. This can be explained by the
fact that under the load P,, the local resilient

deformation of a small volume of metal takes
place in the contact zone. As a result, the
contacting teeth approach each other. The
convergence occurs so that the teeth points,
which lie outside the deformation zone, move
by a certain value along the z -axis. Therefore,
with increase of P,, a and b increase and the
area of instantaneous contact patch also grows
(5), and hence contact stresses reduce.

For the purpose of defining the
coefficient B as constant in equation (13), the
actual diagram of stresses distribution
oy (x,y)over the dliptica contact patch (Fig.

2, b) will be replaced with diagram of mean
stresses o, (20) equally distributed over the

given contact patch.
Then, (18) takes the following form:

_ 3R,
T 2zab

gas . (20)

After replacing the variable reslience
coefficient B (x, y) in equation (13) with
constant B, the equation looks as follows:

D(X,y)=Bao(x,y). (21)

For the purpose of using the function
(21), it is necessary to define the expression of
resilience coefficient B. Therefore, first we
will use the dependence which characterizes
the relationship between the resilient
movements (deformations) D of teeth and
stresses arising in them, namely:

Dp = Kmo-sn )

(22)

where: K, is dimensional parameter,
mm/MPa, n is a power exponent, equal to
0,7..0,8 [13, 24] (with regard to the point
contact of objects we should proceed from the
exponent n = 0,7).

Applied to the mating pair of teeth of
gear and wheel, contact stress equation, based

on the generalized Hooke's law, will look as
follows[1]:

O, =
' 1—v12
(23)
(52y +V26 4 )y
0-2 = 2
1-v5
A, ,
where: &, =4z ey =—2 is relative
X y

deformations, 4L,, 4., are absolute
deformations, L,=2a, L,=2b are lengths of

contact ellipse axes, v;, v, ae Poisson
coefficients, E;, E, are resilience moduli of
teeth materials.

Taking into account the equality
AL, =4, Wwe obtan the expression
exly=e4L,, basing on which, in case of

L,=2a, L,=2b, %:a(ais an dllipticity

coefficient [6]), the next formulas will be
obtai ned:

fy Ly

ex Ly
2

Taking into account that 4L, :;—, then
0

AL, a’ a

Exy = ExO = a= a=—aua, where
L, 2p2a 4p
_ PPt s areduced radius of curvature of
Pa + Ps

the lateral tooth profiles.
After placing the right side of the

dependence «,, = ey = 4ia into the equations
0

(23), they will look as follows:

_exla+v))E]  ala+vy)E

1_V12 4p(1_V12) , (24)
_ ex(a+vy)E, _a(a+vy)E
1-v5 4p(1-v3)

Based on the dependence (22), when
n=0.7 and taking into account the expression
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(24), two equations of resilient displacements
of teeth mating pair will be defined as follows:

0.
D, = Klo'{)'7 = Kl{—aiciivl )zE)lJ '
PLL—Vy
@
D. = K.o%7 = K atva)es |
2 202 2( 4p(1—v22)

From (25) and taking into account that
D=4L, =a%/(2p), the dependence of
dimensional parameters will be defined as
follows:

, 07
K.-pl4_1-vi | _
" a (a+vy)E

07
_a_z(“_PJm 1 |
2p\ a (a+vy)E

07

_ 504 a’ 1—‘/12

- 0.3 E !
P (a+v)E

2 0.7
K._-pld_1-vi | _
27 7% a (a+vy)E,

07
_ 3_2(4_/3)0'7 Lvi |
2p a (a+vy)E,

07
_ 904 a® 1—‘/22 .
P>\ (a+v,)E,

(26)

Next, based on the relation (19) and
expressions (26), the equations of contact
resilience of gear and wheel teeth will be
defined as follows:

07 07
pO.SF?1 (0!+V1)E1 7Za2

R PR
204 { o(1- vlz) ]0'7

- 72_0.7 aO.l(an)0.3 (O!+V1)E1

(27)

07
& ~ K O_g.? ~ 204413 1- sz ( %]07 ~
n B pOVBF?\ (a+v;)E 8’

P
07
04 a(1-v3)
207 01 an)°'3 (atvp)Ey |

Taking into account the size of elliptical
contact patch (5), equal to S=zb, and

, =

187

relations (27). The resilience coefficient will
be defined as follows:

2
B=S(6,+6,)=nab(6,+8,) =7 (6,+5,)=
[24
a2 20.8

— X
a 707 aO.l(p P, )0.3
0,7 0,7
y a(l-v2) . a(1-vZ) B 208519,,07 y
(a+n)f (a+vy)E, (aan)0'3

2 0,7 2 0,7
o S B PR (28)
(a+v)E (a+v,)E, '

According to the expression (28), the
function (21) of teeth contact deformation will
take the final form:

=7

20,8 31'972'0'7

— =X
(Of'p'l:)n)(l3

1-v?2 o 1-v2 o
X ~ 1 _ 2 .
[((aﬂ/l)El] +((a+V2)E2j ]O-(X'y) (29)

On the basis of (16) and (29), taking into
account (15), the equation that characterizes
the stressed deformed state of the teeth mating
pair will look asfollows:

D(x,y)=

b a
BR,=B[PdS=B| [o(x,y)dxdy=
S -b-a

0,7 0,7
_2%%a2% R 1-vf 1 V2 _
(a-p-P)2 || (a+n)E (a+v,)E,

2 pa 2 2
_a_I [ 1{5} _(XJ dxdy =
2P—b—a a b
2 3 4
_& 2 p-rFab_ (30)
p 3 3p  3ap

This equation will be transformed to the
following:
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0,7
a2,1 — 20,8 . 3 (appon3) x
T

) 07 5 N\O7
o P W ) B . (3
(a+n)f (a+vy)E,

Exponentiating the left and right parts of
the last equation to power 10/21, the small
semiaxis of the ellipse will be defined:

a=18658x

2 (\07 2 \(\07 170
%3 apP,(1-v{) " apP,(1-v3) (32)
(a+v)E (a+vy)E, l

Based on dependence (32), the major
semiaxis of the eliptical contact patch will be
defined asfollows:

_a_18658
(24 (24

b

10
«3 aan(l—VlZ) OY7+ aan(l—sz) Ty
(a+n)fg (a+vy)E, .

Then, (5) will be transformed to:

(33)

3478
x
o

S=nx

2 \\07 5 \\07 ?
«3 appn(l_vl ) + appn(l_VZ) (34)
(x+v))E (a+vy)E, '

And finally, taking into account (34), the
contact tightness coefficient (12) will look as
follows:

K = E _ mabsin g, _
p
5 2p 412 =12 [arcsi n[haera] —arcs n[yaﬁ
Pa Pa

27\’ 2\%7 ?
3478-7sin g, 3 (aan(l—vl )J +[Oprn(l—vZ)J
(a+v,)E (a+v,)E, (35)

aparE -rf (arcsi r{mj— arcsir{yaJ]
Pa

Pa

As a matter of practice, in the
calculations: v,;=v,=v=03, and E=E,=E.
Based on this, the equation (32) will be
simplified:

673,754 2P|
' n (ax+v)E

K, = . (36)
apare -1 [arcsi n(ha; Ya J —arcs n(yaJJ

Pa

Next, the influence of gear parameters on
contact tightness coefficient (36) will be
studied (Fig. 4 —Fig. 7).

Ko
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Fig. 4. Dependency K, ( contact tightness coefficient)
on S (contact area of the lateral tooth surface)

RN
"1

05 \
04

a3
a2
N
01 —_
0 2 4 6 5«

Fig. 5. Dependency K|, (contact tightness coefficient)
onea (elipticity)
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Fig. 6. Dependency K|, (contact tightness coefficient)
on Py (normal stressin nominal contact point)
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Fig. 7. Dependency K, (contact tightness coefficient)
on ¢ (pressure anglein nominal contact point)

In Fig. 47, it is evident that increasing
Py (normal stressin nominal contact point) or
increasing S (instantaneous contact patch
area), which can be the consequence of
increasing in P, the value of contact tightness
coefficient is increased and, therefore, the load
capacity increases, and the conditions of oil-
film wedge formation are improved, friction

decreases, transmission performance
improves, contact and bending stress
decreases.

Therefore, it can be justly concluded that
gear load capability isin direct dependence on
the contact tightness coefficient, which should
be classified as the criterion for selecting of
tooth rim parameters from the point of view of
the best durability characteristics.

CONCLUSIONS

1. The man factors affecting the
performance and competitiveness of crossed-
axis helical gear were studied. Theoretical
research on building up a mathematical model
of helical gear teeth loaded state was
conducted.

2. Anaytica dependences of contact
tightness coefficient on load factors and
geometric parameters of original profile and
original hyperboloid surfaces were defined.
The considered factor belongs to the main
group of criteria included in the objective
function that is used for the multi-criteria
synthesis of anew initial gear profile.

3. Anaytical dependences were derived
that uniquely identify the theoretical initia
surfaces of helical gears.

4. With the aim of defining a correlation
dependence between performance criteria, a
multiple correlation analysis of qualitative
variable was conducted. This will enable
setting up a close correlation between the
contact tightness coefficient and load capacity
and teeth contact strength. The obtained
results of the comparative analysis confirmed
the accuracy of the developed theory and the
adequacy of the proposed mathematical
models.
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KPUTEPUU HATPY30UYHOM CITIOCOBHOCTU
3YBUYATBIX BUHTOBBIX [IEPEJIAY

Ilasen Hoc1<0| Banenmun ll[umos,LZZeHuc Pamoes,
Hasen @unvb, Anopeii Jlvicenko

AHHOTaAnuA. IIpencraBnenst pe3yIbTaTh
HCCIIeIOBAaHUN MOBBIIIEHUS HArpy304HONW CIOCOOHOCTH
U BBEJICH B PACCMOTPEHHUE OJIUH U3 BaXKHBIX KPUTECPHEB
paborocriocobHOoCTH — TIepenady  —  KOI(QQHUIUEHT
IUIOTHOCTH MIpUJIETaHUs AKTUBHBIX OOKOBBIX
MOBEPXHOCTEN 3yObeB BHUHTOBBIX nepenad,
XapaKTEepPU3YIONMH HAINPSHKEHHOE COCTOSHHE 3yOheB
BUHTOBOM mepenaud. IlomydeHsl  aHaIUTHYECKHUE
3aBHCHMOCTH, OJITHO3HAYHO OIIpEe IENSIOIUE
TEOPETHYECKHE HaAYalbHbIE ITOBEPXHOCTH BUHTOBBIX
nepenay.

PesynpraTamu CPaBHUTEIIBHOTO aHaIMu3a
MOJATBEpKIEHA  TpsiMasg ~ 3aBUCUMOCTh  HECYIIEeH
CIOCOOHOCTH 3yOuaToll mepenayd OT PacCMOTPEHHOTO
K03(h(hUIMEHTA MIIIOTHOCTH ITPUIIETaHUs.

Knrouessie cloBa: BHUHTOBas repesaya,
KO3()(OUIMEHT IUIOTHOCTH TpWIEraHWs, KpUTEpHH
Harpy304HOW  crmocoOHocTH, meneBas  (yHKOus,
ONTHUMHU3AIMSA, CHHTE3, HadaJbHbIE ITOBEPXHOCTH,

AKCOMBI.



