PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 4 |

Tytuł artykułu

c‑Fos and neuronal plasticity: the aftermath of Kaczmarek’s theory

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The development of molecular biology methods in the early 1980s led to a better understanding of the role of transcription factors in mammalian cells. The discovery that some transcription factors are critically important for cells to switch between different functional states was fundamental for modern molecular neurobiology. In the 1980s Leszek Kaczmarek proposed that, analogically to the cell cycle or to cell differentiation, long‑term synaptic plasticity, learning, and memory should also require the activity of transcription factors. To test his hypothesis, he focused on c‑Fos. His team showed that the c‑Fos proto‑oncogene is activated by synaptic plasticity and learning, and is required for these phenomena to occur. Subsequent studies showed that timp‑1 and mmp‑9 are c‑Fos effector genes that are required for plasticity. The present review summarizes Kaczmarek’s hypothesis and the major evidence that supports it. We also describe the ways in which knowledge of the molecular neurobiology of learning and memory advanced because of Kaczmarek’s theory. Finally, we briefly discuss the degree to which his hypothesis holds true today after the discovery of non‑coding RNAs, a novel class of regulatory molecules that were not taken into account by Leszek Kaczmarek in the 1980s.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

4

Opis fizyczny

p.287-296,ref.

Twórcy

autor
  • International Institute of Molecular and Cell Biology, Warsaw, Poland
autor
  • Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
autor
  • Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

  • Balschun D, Wolfer DP, Gass P, Mantamadiotis T, Welzl H, Schutz G, Frey JU, Lipp HP (2003) Does cAMP response element‑binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus‑de‑ pendent memory? J Neurosci 23: 6304–6314.
  • Barco A, Pittenger C, Kandel ER (2003) CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets 7: 101–114.
  • Benito E, Barco A (2014) The neuronal activity‑driven transcriptome. Mol Neurobiol 51: 1071–1088.
  • Benito E, Valor LM, Jimenez‑Minchan  M, Huber  W, Barco A (2011) cAMP response element‑binding protein is a  primary hub of activity‑driven neuronal gene expression. J Neurosci 31: 18237–18250.
  • Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M, Izquierdo I, Medina JH (1997) Involvement of hippocampal cAMP/ cAMP‑dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci 94: 7041–7046.
  • Bieganska K, Figiel I, Gierej D, Kaczmarek L, Klejman A (2012) Silencing of ICERs (Inducible cAMP Early Repressors) results in partial protection of neurons from programmed cell death. Neurobiol Dis 45: 701–710.
  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long‑term memory in mice with a  targeted mutation of the cAMP‑responsive element‑binding protein. Cell 79: 59–68.
  • Chronis C, Fiziev P, Papp B, Butz S, Bonora G, Sabri S, Ernst J, Plath K (2017) Cooperative binding of transcription factors orchestrates reprogram‑ ming. Cell 168: 442–459.
  • Curran T, Morgan JI (1987) Memories of fos. Bioessays 7: 255–258.
  • Dragunow M, Robertson HA (1987a) Generalized seizures induce c‑fos pro‑ tein(s) in mammalian neurons. Neurosci Lett 82: 157–161.
  • Dragunow M, Robertson HA (1987b) Kindling stimulation induces c‑fos protein(s) in granule cells of the rat dentate gyrus. Nature 329: 441–442.
  • Dziembowska M, Milek J, Janusz A, Rejmak E, Romanowska E, Gorkiewicz T, Tiron A, Bramham CR, Kaczmarek  L (2012) Activity‑dependent local translation of matrix metalloproteinase‑9. J Neurosci 32: 14538–14547.
  • Edbauer D, Neilson JR, Foster KA, Wang C‑F, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng  M (2010) Regulation of synaptic structure and function by FMRP‑associated microRNAs miR‑125b and miR‑132. Neuron 65: 373–384.
  • Etkin A, Alarcon JM, Weisberg SP, Touzani K, Huang YY, Nordheim A, Kandel ER (2006) A role in learning for SRF: deletion in the adult fore‑ brain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 50: 127–143.
  • Filipkowski RK, Rydz M, Berdel B, Morys J, Kaczmarek L (2000) Tactile ex‑ perience induces c‑fos expression in rat barrel cortex. Learn Mem 7: 116–122.
  • Filipkowski RK, Rydz M, Kaczmarek L (2001) Expression of c‑Fos, Fos B, Jun B, and Zif268 transcription factor proteins in rat barrel cortex fol‑ lowing apomorphine‑evoked whisking behavior. Neuroscience 106: 679–688.
  • Frankland PW, Bontempi B, Talton LE, Kaczmarek  L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304: 881–883.
  • Ganguly K, Rejmak E, Mikosz M, Nikolaev E, Knapska E, Kaczmarek L (2013) Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning. J Biol Chem 288: 20978–20991.
  • Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long‑term memory‑a molecular framework. Nature 322: 419–422.
  • Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhtik E, Russo MJ, Gordon JA, Salzman CD, Axel R (2015) Neural representations of uncon‑ ditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162: 134–145.
  • Grimm R, Schicknick H, Riede I, Gundelfinger ED, Herdegen T, Zuschratter W, Tischmeyer W (1997) Suppression of c‑fos induction in rat brain impairs retention of a brightness discrimination reaction. Learn Mem 3: 402–413.
  • Guennewig B, Cooper AA (2014) The central role of noncoding RNA in the brain. Int Rev Neurobiol 116: 153–194.
  • Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroR‑ NA‑223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci 109: 18962–18967.
  • Hoz  L de, Gierej D, Lioudyno  V, Jaworski J, Blazejczyk  M, Cruces‑Solis H, Beroun A, Lebitko T, Nikolaev T, Knapska E, Nelken I, Kaczmarek L (2018) Blocking c‑Fos expression reveals the role of auditory cortex plasticity in sound frequency discrimination learning. Cereb Cortex 28: 1645–1655.
  • Hu Z, Li Z (2017) miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol 45: 24–31.
  • Jancic D, Lopez de Armentia  M, Valor LM, Olivares R, Barco A (2009) In‑ hibition of cAMP response element‑binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex 19: 2535–2547.
  • Janusz A, Milek J, Perycz M, Pacini L, Bagni C, Kaczmarek L, Dziembowska M (2013) The Fragile X mental retardation protein regulates matrix metal‑ loproteinase 9 mRNA at synapses. J Neurosci 33: 18234–18241.
  • Jasinska M, Milek J, Cymerman IA, Leski S, Kaczmarek L, Dziembowska M (2016) miR‑132 regulates dendritic spine structure by direct targeting of matrix metalloproteinase 9 mRNA. Mol Neurobiol 53: 4701–4712.
  • Jaworski J, Biedermann IW, Lapinska J, Szklarczyk A, Figiel I, Konopka D, Nowicka D, Filipkowski RK, Hetman M, Kowalczyk A, Kaczmarek L (1999) Neuronal excitation‑driven and AP‑1‑dependent activation of tissue in‑ hibitor of metalloproteinases‑1 gene expression in rodent hippocam‑ pus. J Biol Chem 274: 28106–28112.
  • Jaworski J, Mioduszewska B, Sanchez‑Capelo A, Figiel I, Habas A, Gozdz A, Proszynski T, Hetman M, Mallet J, Kaczmarek L (2003) Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive ele‑ ment‑binding protein, evokes neuronal apoptosis in vitro. J Neurosci 23: 4519–4526.
  • Joo JY, Schaukowitch K, Farbiak L, Kilaru G, Kim TK (2016) Stimulus‑specific combinatorial functionality of neuronal c‑fos enhancers. Nat Neurosci 19: 75–83.
  • Kaczmarek L (1992) Expression of c‑fos and other genes encoding tran‑ scription factors in long‑term potentiation. Behav Neural Biol 57: 263–266.
  • Kaczmarek  L (1993a) Molecular biology of vertebrate learning: is c‑fos a new beginning? J Neurosci Res 34: 377–381.
  • Kaczmarek L (1993b) Glutamate receptor‑driven gene expression in learn‑ ing. Acta Neurobiol Exp 53: 187–196.
  • Kaczmarek L (1995) Towards understanding of the role of transcription fac‑ tors in learning processes. Acta Biochim Pol 42: 221–226.
  • Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate‑early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23: 237–256.
  • Kaczmarek L, Kamińska B (1989) Molecular biology of cell activation. Exp Cell Res 183: 24–35. Kaczmarek L, Lapinska‑Dzwonek J, Szymczak S (2002) Matrix metallopro‑ teinases in the adult brain physiology: a link between c‑Fos, AP‑1 and remodeling of neuronal connections? EMBO J 21: 6643–6648.
  • Kaczmarek L, Nikolajew E (1990) c‑fos protooncogene expression and neu‑ ronal plasticity. Acta Neurobiol Exp 50: 173–179.
  • Kaczmarek L, Siedlecki JA, Danysz W (1988) Proto‑oncogene c‑fos induction in rat hippocampus. Brain Res 427: 183–186.
  • Kaczmarek L, Zangenehpour S, Chaudhuri A (1999) Sensory regulation of immediate‑early genes c‑fos and zif268 in monkey visual cortex at birth and throughout the critical period. Cereb Cortex 9: 179–187.
  • Kaliszewska A, Bijata M, Kaczmarek L, Kossut M (2012) Experience‑depen‑ dent plasticity of the barrel cortex in mice observed with 2‑DG brain mapping and c‑Fos: effects of MMP‑9 KO. Cereb Cortex 22: 2160–2170.
  • Kalita K, Kharebava G, Zheng JJ, Hetman M (2006) Role of megakaryoblastic acute leukemia‑1 in ERK1/2‑dependent stimulation of serum response factor‑driven transcription by BDNF or increased synaptic activity. J Neu‑ rosci 26: 10020–10032.
  • Kaminska B, Filipkowski RK, Zurkowska G, Lason  W, Przewlocki R, Kaczmarek  L (1994) Dynamic changes in the composition of the AP‑1 transcription factor DNA‑binding activity in rat brain following kain‑ ate‑induced seizures and cell death. Eur J Neurosci 6: 1558–1566.
  • Kaminska B, Kaczmarek L, Chaudhuri A (1996) Visual stimulation regulates the expression of transcription factors and modulates the composition of AP‑1 in visual cortex. J Neurosci 16: 3968–3978.
  • Kim TK, Hemberg  M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara‑Haley K, Kuersten S, Markenscoff‑Papadimitriou E, Kuhl D, et al. (2010) Widespread transcription at neuronal activity‑regu‑ lated enhancers. Nature 465: 182–187.
  • Knapska E, Kaczmarek L (2004) A gene for neuronal plasticity in the mam‑ malian brain: Zif268/Egr‑1/NGFI‑A/Krox‑24/TIS8/ZENK? Prog Neurobiol 74: 183–211.
  • Knapska E, Macias  M, Mikosz  M, Nowak A, Owczarek D, Wawrzyniak  M, Pieprzyk M, Cymerman IA, Werka T, Sheng M, Maren S, Jaworski J, et al. (2012) Functional anatomy of neural circuits regulating fear and extinc‑ tion. Proc Natl Acad Sci 109: 17093–17098.
  • Knapska E, Nikolaev E, Boguszewski P, Walasek G, Blaszczyk J, Kaczmarek L, Werka T (2006a) Between‑subject transfer of emotional information evokes specific pattern of amygdala activation. Proc Natl Acad Sci 103: 3858–3862.
  • Knapska E, Radwanska K, Werka T, Kaczmarek L (2007) Functional internal complexity of amygdala: focus on gene activity mapping after behavior‑ al training and drugs of abuse. Physiol Rev 87: 1113–1173.
  • Knapska E, Walasek G, Nikolaev E, Neuhäusser‑Wespy F, Lipp H‑P, Kaczmarek  L, Werka T (2006b) Differential involvement of the cen‑ tral amygdala in appetitive versus aversive learning. Learn Mem 13: 192–200.
  • Knaupp AS, Buckberry S, Pflueger J, Lim SM, Ford E, Larcombe MR, Rossello FJ, Mendoza A de, Alaei S, Firas J, Holmes ML, Nair SS, Clark SJ, Nefzger CM, Lister R, Polo JM (2017) Transient and permanent reconfig‑ uration of chromatin and transcription factor occupancy drive repro‑ gramming. Cell Stem Cell 21: 834–845.
  • Kondratiuk I, Łęski S, Urbańska M, Biecek P, Devijver H, Lechat B, Van Leuven F, Kaczmarek L, Jaworski T (2016) GSK‑3β and MMP‑9 coop‑ erate in the control of dendritic spine morphology. Mol Neurobiol 54: 200–211.
  • Konopacki FA, Rylski  M, Wilczek E, Amborska R, Detka D, Kaczmarek  L, Wilczynski GM (2007) Synaptic localization of seizure‑induced matrix metalloproteinase‑9 mRNA. Neuroscience 150: 31–39.
  • Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M, Kowarsch A, Michaluk P, Dzwonek J, Arnsperger T, Wilczynski G, Merkenschlager  M, et al. (2010) MicroRNA loss enhances learning and memory in mice. J Neurosci 30: 14835–14842.
  • Kuzniewska B, Nader K, Dabrowski M, Kaczmarek L, Kalita K (2016) Adult Deletion of SRF Increases Epileptogenesis and Decreases Activity‑In‑ duced Gene Expression. Mol Neurobiol 53: 1478–1493.
  • Kuzniewska B, Rejmak E, Malik AR, Jaworski J, Kaczmarek L, Kalita K (2013) Brain‑derived neurotrophic factor induces matrix metalloproteinase 9 expression in neurons via the serum response factor/c‑Fos pathway. Mol Cell Biol 33: 2149–2162.
  • Lepeta K, Purzycka KJ, Pachulska‑Wieczorek K, Mitjans  M, Begemann  M, Vafadari B, Bijata K, Adamiak RW, Ehrenreich H, Dziembowska  M, Kaczmarek  L (2017) A normal genetic variation modulates synaptic MMP‑9 protein levels and the severity of schizophrenia symptoms. EMBO Mol Med 9: 1100–1116.
  • Losing P, Niturad CE, Harrer  M, Reckendorf CMZ, Schatz T, Sinske D, Lerche H, Maljevic S, Knoll B (2017) SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorgani‑ zation in the mouse pilocarpine epilepsy model. Mol Brain 10: 30.
  • Lukasiuk K, Kaczmarek  L (1994) AP‑1 and CRE DNA binding activities in rat brain following pentylenetetrazole induced seizures. Brain Res 643: 227–233.
  • Lukasiuk K, Savonenko A, Nikolaev E, Rydz M, Kaczmarek L (1999) Defen‑ sive conditioning‑related increase in AP‑1 transcription factor in the rat cortex. Brain Res Mol Brain Res 67: 64–73.
  • Magnowska M, Gorkiewicz T, Suska A, Wawrzyniak M, Rutkowska‑Wlodarczyk I, Kaczmarek  L, Wlodarczyk J (2016) Transient ECM protease activity pro‑ motes synaptic plasticity. Sci Rep 6: 27757.
  • Malik AN, Vierbuchen T, Hemberg M, Rubin AA, Ling E, Couch CH, Stroud H, Spiegel I, Farh KK, Harmin DA, Greenberg ME (2014) Genome‑wide iden‑ tification and characterization of functional neuronal activity‑depen‑ dent enhancers. Nat Neurosci 17: 1330–1339.
  • Michaluk P, Kolodziej  L, Mioduszewska B, Wilczynski GM, Dzwonek J, Jaworski J, Gorecki DC, Ottersen OP, Kaczmarek L (2007) Beta‑dystrogly‑ can as a target for MMP‑9, in response to enhanced neuronal activity. J Biol Chem 282: 16036–16041.
  • Michaluk P, Wawrzyniak  M, Alot P, Szczot  M, Wyrembek P, Mercik  K, Medvedev N, Wilczek E, De Roo  M, Zuschratter  W, Muller D, Wilczynski  GM, et al. (2011) Influence of matrix metalloproteinase MMP‑9 on dendritic spine morphology. J Cell Sci 124: 3369–3380.
  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c‑fos expression in the central nervous system after seizure. Science 237: 192–197.
  • Morgan JI, Curran T (1988) Calcium as a modulator of the immediate‑early gene cascade in neurons. Cell Calcium 9: 303–311.
  • Morgan JI, Curran T (1991) Stimulus‑transcription coupling in the nervous system: involvement of the inducible proto‑oncogenes fos and jun. Annu Rev Neurosci 14: 421–451.
  • Nedivi E, Hevroni D, Naot D, Israeli D, Citri Y (1993) Numerous candidate plasticity‑related genes revealed by differential cDNA cloning. Nature 363: 718–722.
  • Nikolaev E, Kaczmarek L, Zhu SW, Winblad B, Mohammed AH (2002) Envi‑ ronmental manipulation differentially alters c‑Fos expression in amyg‑ daloid nuclei following aversive conditioning. Brain Res 957: 91–98.
  • Nikolaev E, Kaminska B, Tischmeyer W, Matthies H, Kaczmarek L (1992a) Induction of expression of genes encoding transcription factors in the rat brain elicited by behavioral training. Brain Res Bull 28: 479–484.
  • Nikolaev E, Tischmeyer W, Krug M, Matthies H, Kaczmarek L (1991) c‑fos protooncogene expression in rat hippocampus and entorhinal cortex following tetanic stimulation of the perforant path. Brain Res 560: 346–349.
  • Nikolaev E, Werka T, Kaczmarek L (1992b) C‑fos protooncogene expression in rat brain after long‑term training of two‑way active avoidance reac‑ tion. Behav Brain Res 48: 91–94.
  • Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, Storm DR (2010) Neuronal activity rapidly induces transcription of the CREB‑regulated microRNA‑132, in vivo. Hippocampus 20: 492–498.
  • Okulski P, Jay TM, Jaworski J, Duniec K, Dzwonek J, Konopacki FA, Wilczynski GM, Sanchez‑Capelo A, Mallet J, Kaczmarek L (2007) TIMP‑1 abolishes MMP‑9‑dependent long‑lasting long‑term potentiation in the prefrontal cortex. Biol Psychiatry 62: 359–362.
  • Paletzki RF, Myakishev MV, Polesskaya O, Orosz A, Hyman SE, Vinson C (2008) Inhibiting activator protein‑1 activity alters cocaine‑induced gene expression and potentiates sensitization. Neuroscience 152: 1040–1053.
  • Parkitna JR, Bilbao A, Rieker C, Engblom D, Piechota  M, Nordheim A, Spanagel R, Schutz G (2010) Loss of the serum response factor in the dopamine system leads to hyperactivity. FASEB J 24: 2427–2435.
  • Phanstiel DH, Van Bortle K, Spacek D, Hess GT, Shamim MS, Machol I, Love MI, Aiden EL, Bassik MC, Snyder MP (2017) Static and dynamic DNA loops form AP‑1‑bound activation hubs during macrophage de‑ velopment. Mol Cell 67: 1037–1048.
  • Pijet B, Stefaniuk  M, Kostrzewska‑Ksiezyk A, Tsilibary PE, Tzinia A, Kaczmarek L (2018) Elevation of MMP‑9 levels promotes epileptogene‑ sis after traumatic brain injury. Mol Neurobiol 55: 9294–9306.
  • Radwanska K, Nikolaev E, Kaczmarek L (2010) Central noradrenergic lesion induced by DSP‑4 impairs the acquisition of avoidance reactions and prevents molecular changes in the amygdala. Neurobiol Learn Mem 94: 303–311.
  • Radwanska K, Nikolaev E, Knapska E, Kaczmarek L (2002) Differential re‑ sponse of two subdivisions of lateral amygdala to aversive conditioning as revealed by c‑Fos and P‑ERK mapping. Neuroreport 13: 2241–2246.
  • Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schutz G, Linden DJ, Ginty DD (2005) SRF mediates activity‑induced gene expression and synaptic plas‑ ticity but not neuronal viability. Nat Neurosci 8: 759–767.
  • Robertson LM, Kerppola TK, Vendrell M, Luk D, Smeyne RJ, Bocchiaro C, Morgan JI, Curran T (1995) Regulation of c‑fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14: 241–252.
  • Rylski M, Amborska R, Zybura K, Michaluk P, Bielinska B, Konopacki FA, Wilczynski GM, Kaczmarek  L (2009) JunB is a  repressor of MMP‑9 transcription in depolarized rat brain neurons. Mol Cell Neurosci 40: 98–110.
  • Saba R, Störchel PH, Aksoy‑Aksel A, Kepura F, Lippi G, Plant TD, Schratt GM (2012) Dopamine‑regulated microRNA MiR‑181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32: 619–632.
  • Samochowiec A, Grzywacz A, Kaczmarek L, Bienkowski P, Samochowiec J, Mierzejewski P, Preuss UW, Grochans E, Ciechanowicz A (2010) Func‑ tional polymorphism of matrix metalloproteinase‑9 (MMP‑9) gene in alcohol dependence: family and case control study. Brain Res 1327: 103–106.
  • Savonenko A, Filipkowski RK, Werka T, Zielinski K, Kaczmarek  L (1999) Defensive conditioning‑related functional heterogeneity among nu‑ clei of the rat amygdala revealed by c‑Fos mapping. Neuroscience 94: 723–733.
  • Savonenko A, Werka T, Nikolaev E, Zieliñski K, Kaczmarek L (2003) Complex effects of NMDA receptor antagonist APV in the basolateral amygdala on acquisition of two‑way avoidance reaction and long‑term fear mem‑ ory. Learn Mem 10: 293–303.
  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler  M, Greenberg ME (2006) A brain‑specific microRNA regulates dendritic spine development. Nature 439: 283–289.
  • Sheng M, Greenberg ME (1990) The regulation and function of c‑fos and other immediate early genes in the nervous system. Neuron 4: 477–485.
  • Sheng, G. McFadden,  M. E. Greenberg (1990) Membrane depolarization and calcium induce c‑fos transcription via phosphorylation of transcrip‑ tion factor CREB. Neuron 4: 571–582.
  • Smalheiser NR (2014) The RNA‑centred view of the synapse: non‑coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 369: 1652.
  • Su Y, Shin J, Zhong C, Wang S, Roychowdhury P, Lim J, Kim D, Ming GL, Song H (2017) Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nat Neurosci 20: 476–483.
  • Szepesi Z, Bijata M, Ruszczycki B, Kaczmarek L, Wlodarczyk J (2013) Matrix metalloproteinases regulate the formation of dendritic spine head pro‑ trusions during chemically induced long‑term potentiation. PLoS One 8: e63314.
  • Szepesi Z, Hosy E, Ruszczycki B, Bijata M, Pyskaty M, Bikbaev A, Heine M, Choquet D, Kaczmarek  L, Wlodarczyk J (2014) Synaptically released matrix metalloproteinase activity in control of structural plasticity and the cell surface distribution of GluA1‑AMPA receptors. PLoS One 9: e98274.
  • Szklarczyk A, Kaczmarek  L (1995) Antisense oligodeoxyribonucleotides: stability and distribution after intracerebral injection into rat brain. J Neurosci Methods 60: 181–187.
  • Szklarczyk A, Kaczmarek L (1997) Pharmacokinetics of antisense analogues in the central nervous system. Neurochem Int 31: 413–423.
  • Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L (2002) Matrix metalloproteinase‑9 undergoes expression and activation during den‑ dritic remodeling in adult hippocampus. J Neurosci 22: 920–930.
  • Tischmeyer W, Kaczmarek L, Strauss M, Jork R, Matthies H (1990) Accumu‑ lation of c‑fos mRNA in rat hippocampus during acquisition of a bright‑ ness discrimination. Behav Neural Biol 54: 165–171.
  • Tonegawa S, Liu X, Ramirez S, Redondo R (2015) Memory engram cells have come of age. Neuron 87: 918–931.
  • Vierbuchen T, Ling E, Cowley CJ, Couch CH, Wang X, Harmin DA, Roberts  CWM, Greenberg ME (2017) AP‑1 transcription factors and the BAF complex mediate signal‑dependent enhancer selection. Mol Cell 68: 1067–1082.
  • Wang A, Wang J, Liu Y, Zhou Y (2017) Mechanisms of long non‑coding RNAs in the assembly and plasticity of neural circuitry. Front Neural Circuits 11: 76. West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription fac‑ tors by neuronal activity. Nat Rev Neurosci 3: 921–931.
  • Wilczynski GM, Konopacki FA, Wilczek E, Lasiecka Z, Gorlewicz A, Michaluk P, Wawrzyniak M, Malinowska M, Okulski P, Kolodziej LR, Konopka W, Duniec K, et al. (2008) Important role of matrix metalloproteinase 9 in epileptogenesis. J Cell Biol 180: 1021–1035.
  • Wu Y, Zhang D, Lou D, Fan Y, Aronow B, Xu M, Zhang J (2004) C‑fos regu‑ lates neuropeptide Y expression in mouse dentate gyrus. Neurosci Lett 363: 6–10.
  • Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ, Xu M (2002) c‑fos regulates neuronal excitability and survival. Nat Genet 30: 416–420.
  • Zybura‑Broda K, Amborska R, Ambrozek‑Latecka M, Wilemska J, Bogusz A, Bucko J, Konopka A, Grajkowska W, Roszkowski M, Marchel A, Rysz A, Koperski L, Wilczynski GM, Kaczmarek L, Rylski M (2016) Epigenetics of epileptogenesis‑evoked upregulation of matrix metalloproteinase‑9 in hippocampus. PLoS One 11: e0159745.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5c93f4ba-e2ba-4e59-9702-7ad016c318a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.