PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 18 | 2 |

Tytuł artykułu

Pituitary adenylate cyclase-activating peptide-27 (PACAP-27) is co-stored with galanin, substance P and corticotropin releasing factor (CRF) in intrapancreatic ganglia of the sheep

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide existing in two variant forms (of either 27 or 38 residues), widely present in numerous organs and evoking multiple effects both in the central and peripheral nervous systems. The present study was undertaken to evaluate the distribution pattern of PACAP-27 expression in the ovine pancreas. Using double immunohistochemical stainings co-localizations of PACAP-27 with galanin, SP or CRF were studied in intrapancreatic neurons. In intrapancreatic ganglia, immunoreactivty to PACAP-27 was found in 87.6 ± 5.4% of PGP 9.5-positive intrapancreatic neurons but not in intraganglionic nerve fibres. Numerous PACAP-27-im-munoreactive nerve terminals were also observed between pancreatic acini and around small arterioles. No immunoreactivity to PACAP-27 was found in the endocrine pancreas. In 42.9 ± 6.2% of PACAP-27-immunoreactive intrapancreatic neurons the expression of galanin was also found. Statistically lower subpopulation (12.4 ± 4.0%) of intrapancreatic neurons exhibited simultaneously the immunoreactivity to PACAP-27 and SP. The expression of CRF was detected in the relatively smallest group (3.2 ± 1.4%) of PACAP-27-positive intrapancreatic neurons. The present results suggest that in the ovine pancreas PACAP-27 may play an important role as mediator of pancreatic functions. In PACAP-related pancreatic activities, a modulatory role of galanin, SP and to a lower extend of CRF is also likely.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.33-350,fig.,ref.

Twórcy

  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
  • Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland

Bibliografia

  • Anglade P (1987) Ultrastructural study of acetylcholinesterase activity in the intrapancreatic ganglia of the rat. Cell Mol Biol 33: 63-67.
  • Arciszewski MB (2007) Expression of neuronal nitric oxide synthase in the pancreas of the sheep. Anat Histol Embryol 36: 375-381.
  • Arciszewski MB, Zacharko-Siembida A (2007a) A co-localization study on the ovine pancreas innervation. Ann Anat 189: 157-167.
  • Arciszewski MB, Zacharko-Siembida A (2007b) Cholinergic innervation of the pancreas in the sheep. Acta Biol Hung 58: 151-161.
  • Arciszewski MB, Stefaniak M, Zacharko-Siembida A, Całka J (2011) Aquaporin 1 water channel is expressed on submucosal but not myenteric neurons from the ovine duodenum. Ann Anat 193: 81-85.
  • Baltazar ET, Kitamura N, Sasaki M, Cottrell DF, Boloron HM, Yamada J (2001) Galanin-like immunoreactive neural elements in domestic ruminant pancreas. J Vet Med Sci 63: 841-848.
  • Cox HM (1992) Pituitary adenylate cyclase activating polypeptides, PACAP-27 and PACAP-38: stimulators of electrogenic ion secretion in the rat small intestine. Br J Pharmacol 106: 498-502.
  • Csati A, Tajti J, Kuris A, Tuka B, Edvinsson L, Warfvinge K (2012) Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion. Neuroscience 202: 158-168.
  • Dore R, Iemolo A, Smith KL, Wang X, Cottone P, Sabino V (2013) CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of PACAP. Neurop-sychopharmacology 38: 2160-2169.
  • Edwards AV, Jones CT (1994) Adrenal responses to the peptide PACAP in conscious functionally hypophysectomized calves. Am J Physiol 266: E870-E876.
  • Filipsson K, Sundler F, Hannibal J, Ahren B (1998) PACAP and PACAP receptors in insulin producing tissues: localization and effects. Regul Pept 74: 167-175.
  • Fridolf T, Sundler F, Ahren B (1992) Pituitary adenylate cyc-lase-activating polypeptide (PACAP): occurrence in rodent pancreas and effects on insulin and glucagon secretion in the mouse. Cell Tissue Res 269: 275-279.
  • Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR (1993) Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 136: 159-166.
  • Girard BM, Young BA, Buttolph TR, White SL, Parsons RL (2007) Regulation of neuronal pituitary adenylate cyclase-activating polypeptide expression during culture of guinea-pig cardiac ganglia. Neuroscience 146: 584-593.
  • Hannibal J, Fahrenkrug J (2000) Pituitary adenylate cyc-lase-activating polypeptide in intrinsic and extrinsic nerves of the rat pancreas. Cell Tissue Res 299: 59-70.
  • He X, Meng F, Wang Y, Li J (2014) Molecular cloning and characterization of two pig vasoactive intestinal polypeptide receptors (VPAC1-R and VPAC2-R). DNA Cell Biol 33: 259-270.
  • Hobson SA, Bacon A, Elliot-Hunt CR, Holmes FE, Kerr NC, Pope R, Vanderplank P, Wynick D (2010) Galanin acts as a trophic factor to the central and peripheral nervous systems. EXS 102: 25-38.
  • Kanasaki H, Oride A, Kyo S (2015) Role of pituitary adenylate cyclase-activating polypeptide in modulating hy-pothalamus-pituitary neuroendocrine functions in mouse cell models. J Neuroendocrinol 27: 1-7.
  • Kantor O, Molnár J, Heinzelmann A, Fürst Z, Arimura A, Köves K (2000) The inhibitory effect of PACAP38 on ovulation is mediated by CRF and endogenous opioids. Ann N Y Acad Sci 921: 405-409.
  • Kirchgessner AL, Gershon MD (1990) Innervation of the pancreas by neurons in the gut. J Neurosci 10: 1626-1642.
  • Kirchgessner AL, Liu MT (2001) Pituitary adenylate cyclase activating peptide (PACAP) in the enteropancreatic innervation. Anat Rec 262: 91-100.
  • Koüves K, Arimura A, Vigh S, Somogyváari-Vigh A, Miller J (1993) Immunohistochemical localization of PACAP in the ovine digestive system. Peptides 14: 449-455.
  • Kozicz T, Vigh S, Arimura A (1997) Axon terminals containing PACAP- and VIP-immunoreactivity form synapses with CRF-immunoreactive neurons in the dorsolateral division of the bed nucleus of the stria terminalis in the rat. Brain Res 767: 109-119.
  • Kozicz T, Arimura A (2000) Synaptic interaction between galanin immunoreactive neurons and axon terminals immunopositive for VIP and PACAP in the bed nucleus of the stria terminalis in the rat. Ann N Y Acad Sci 921: 327-332.
  • Lenz HJ, Messmer B, Zimmerman FG (1992) Noradrenergic inhibition of canine gallbladder contraction and murine pancreatic secretion during stress by corticotropin-releasing factor. J Clin Invest 89: 437-443.
  • Love JA, Szebeni K (1999) Morphology and histochemistry of the rabbit pancreatic innervation. Pancreas 18: 53-64.
  • Luiten PG, ter Horst GJ, Koopmans SJ, Rietberg M, Steffens AB (1984) Preganglionic innervation of the pancreas islet cells in the rat. J Auton Nerv Syst 10: 27-42.
  • Lytras N, Grossman A, Rees LH, Schally AV, Bloom SR, Besser GM (1984) Corticotrophin releasing factor: effects on circulating gut and pancreatic peptides in man. Clin Endocrinol (Oxf) 20: 725-729.
  • Manecka DL, Mahmood SF, Grumolato L, Lihrmann I, Anouar Y (2013) Pituitary adenylate cyclase-activating polypeptide (PACAP) promotes both survival and neuritogenesis in PC12 cells through activation of nuclear factor ęB (NF-ęB) pathway: involvement of extracellular signal-regulated kinase (ERK), calcium, and c-REL. J Biol Chem 288: 14936-14948.
  • Martinez-Fuentes AJ, Castaflo JP, Gracia-Navarro F, Malagón MM (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP27 activate common and distinct intracellular signaling pathways to stimulate growth hormone secretion from porcine somatotropes. Endocrinology 139: 5116-5124.
  • Masuo Y, Ohtaki T, Masuda Y, Nagai Y, Suno M, Tsuda M, Fujino M (1991) Autoradiographic distribution of pituitary adenylate cyclase activating polypeptide (PACAP) binding sites in the rat brain. Neurosci Lett 126: 103-106.
  • Miampamba M, Germano PM, Arli S, Wong HH, Scott D, Tache Y, Pisegna JR (2002) Expression of pituitary adenylate cyclase-activating polypeptide and PACAP type 1 receptor in the rat gastric and colonic myenteric neurons. Regul Pept 105: 145-154.
  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164: 567-574.
  • Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the
  • pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170: 643-648.
  • Moller K, Reimer M, Ekblad E, Hannibal J, Fahrenkrug J, Kanje M, Sundler F (1997) The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res 775: 166-182.
  • Moltz JH, Fawcett CP (1985) Corticotropin-releasing factor: its action on the islets of Langerhans. Endocr Res 11: 87-93.
  • Mounien L, Do Rego JC, Bizet P, Boutelet I, Gourcerol G, Fournier A, Brabet P, Costentin J, Vaudry H, Jegou S (2009) Pituitary adenylate cyclase-activating polypeptide inhibits food intake in mice through activation of the hypothalamic melanocortin system. Neuropsychopharmacology 34: 424-435.
  • Naruse S, Ito O, Kitagawa M, Ishiguro H, Nakajima M, Hayakawa T (1998) Effects of PACAP/VIP/secretin on pancreatic and gastrointestinal blood flow in conscious dogs. Ann N Y Acad Sci 865: 463-465.
  • Nemeth J, Reglödi D, Pozsgai G, Szabó A, Elekes K, Pinter E, Szolcsanyi J, Helyes Z (2006) Effect of pituitary adenylate cyclase activating polypeptide-38 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Neuroscience 143: 223-230.
  • Onaga T, Uchida M, Kimura M, Miyazaki M, Mineo H, Kato S, Zabielski R (1996) Effect of pituitary adenylate cyclase-activating polypeptide on exocrine and endocrine secretion in the ovine pancreas. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 115: 185-193.
  • Puig de Parada M, Parada MA, Hernandez L (1995) Dipsogenic effect of pituitary adenylate cyclase activating polypeptide (PACAP38) injected into the lateral hypothalamus. Brain Res 696: 254-257.
  • Ruönzi M, Muöller MK, Schmid P, von Schöonfeld J, Goebell H (1992) Stimulatory and inhibitory effects of galanin on exocrine and endocrine rat pancreas. Pancreas 7: 619-623.
  • Rytel L, Palus K, Całka J (2014) Co-expression of PACAP with VIP, SP and CGRP in the porcine nodose ganglion sensory neurons. Anat Histol Embryol 44: 86-91.
  • Shigyo M, Aizawa H, Inoue H, Matsumoto K, Takata S, Hara N (1998) Pituitary adenylate cyclase activating peptide regulates neurally mediated airway responses. Eur Respir J 12: 64-70.
  • Schmidt PT, Torn0e K, Poulsen SS, Rasmussen TN, Holst JJ (2000) Tachykinins in the porcine pancreas: potent exocrine and endocrine effects via NK-1 receptors. Pancreas 20: 241-247.
  • Sharkey KA, Williams RG, Dockray GJ (1984) Sensory substance P innervation of the stomach and pancreas. Demonstration of capsaicin-sensitive sensory neurons in the rat by combined immunohistochemistry and retrograde tracing. Gastroenterology 87: 914-921.
  • Suarez V, Guntinas-Lichius O, Streppel M, Ingorokva S, Grosheva M, Neiss WF, Angelov DN, Klimaschewski L (2006) The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurones. Eur J Neurosci 24: 1555-1564.
  • Svoboda M, Tastenoy M, Ciccarelli E, Stievenart M, Christophe J (1993) Cloning of a splice variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor. Biochem Biophys Res Commun 195: 881-888.
  • Tornze K, Hannibal J, Giezemann M, Schmidt P, Holst JJ (1996) PACAP 1-27 and 1-38 in the porcine pancreas: occurrence, localization, and effects. Ann N Y Acad Sci 805: 521-535.
  • Torres-Aleman I, Mason-Garcia M, Schally AV (1984) Stimulation of insulin secretion by corticotropin-releasing factor (CRF) in anesthetized rats. Peptides 5: 541-546.
  • Tsuchida M, Nakamachi T, Sugiyama K, Tsuchikawa D, Watanabe J, Hori M, Yoshikawa A, Imai N, Kagami N, Matkovits A, Atsumi T, Shioda S (2014) PACAP stimulates functional recovery after spinal cord injury through axonal regeneration. J Mol Neurosci 54: 380-387.
  • Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61: 283-357.
  • Yamaguchi N, Minassian TR, Yamaguchi S (2003) Effects of PACAP(1-27) on the canine endocrine pancreas in vivo: interaction with cholinergic mechanism. Can J Physiol Pharmacol 81: 720-729.
  • Zhang Q, Shi TJ, Ji RR, Zhang YZ, Sundler F, Hannibal J, Fahrenkrug J, Hokfelt T (1995) Expression of pituitary adenylate cyclase-activating polypeptide in dorsal root ganglia following axotomy: time course and coexistence. Brain Res 705: 149-158.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5c45d545-6d07-429e-8c69-b5d693c860b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.