PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 02 |

Tytuł artykułu

Investigation of miR396 and growth-regulating factor regulatory network in maize grain filling

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The miR396 and growth-regulating factor (GRF) regulatory network is evolutionarily conserved among plant species. The orthologous GRF genes in rice were involved in regulating grain development, and targeted by miR396. However, there are still no more information about the involvement of miR396 and GRF genes in maize grain. In this article, RNA sequencing was performed on the developing maize kernels to analyze the dynamic profiles of miR396 and GRF genes and explore their possible regulatory roles during maize effective grain filling. Our results showed that GRF genes were also the conserved targets of miR396 in maize, according to computational prediction and validated by degradome sequencing. MiR396 expressed high and gradually declined with advancing maize grain filling, significant negatively correlated with its target GRF genes, which mostly increased continuously. Our test also provided a testimony of miR396-GRF network in different regulations between the development of maize embryo and endosperm by real-time quantitative PCR. And further analysis of expression pattern suggested that miR319, miR166, and RDR might interact with miR396-GRF network during grain development in maize. This study mainly provided a valuable foundation for future comprehensive analysis of miR396-GRF network, and further research work is needed to confirm the regulatory roles of miR396 and GRF genes during grain filling in maize.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

02

Opis fizyczny

Article: 28 [12 p.], fig.,ref.

Twórcy

autor
  • National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 22 Beisi Road, Shihezi 832003, China
autor
  • National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
autor
  • National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
autor
  • National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
autor
  • National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
autor
  • National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 22 Beisi Road, Shihezi 832003, China

Bibliografia

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297
  • Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26(12):1566–1568
  • Borrás L, Westgate ME (2006) Predicting maize kernel sink capacity early in development. Field Crop Res 95(2–3):223–233
  • CF J, AJ R (1972) Factors limiting the supply of sucrose to the developing wheat grain. Ann Bot 36:729–741
  • Choi D, Kim JH, Kende H (2004) Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol 45(7):897–904
  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23(2):431–442
  • Daszkowska-Golec A, Szarejko I (2013) The molecular basis of ABA-mediated plant response to drought De Smet I, Lau S, Mayer U, Jurgens G (2010) Embryogenesis–the humble beginnings of plant life. Plant J 61(6):959–970
  • Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF (2012) Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet 8(1):e1002419
  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J ExpBot 62(10):3563–3573
  • Ding D, Wang Y, Han M, Fu Z, Li W, Liu Z, Hu Y, Tang J (2012)MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One 7(6):e39578
  • DR M (1995) Genetic control and integration of maturation and germination pathways in seed development. Ann Rev Plant Physiol Plant Mol Biol 46:71–93
  • Fang R, Li L, Li J (2013) Spatial and temporal expression modes of MicroRNAs in an elite rice hybrid and its parental lines. Planta 238(2):259–269
  • Galla G, Volpato M, Sharbel TF, Barcaccia G (2013) Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. Plant Reprod 26(3):209–229
  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117
  • Gu Y, Liu Y, Zhang J, Liu H, Hu Y, Du H, Li Y, Chen J, Wei B, Huang Y (2013) Identification and characterization of microRNAs in the developing maize endosperm. Genomics 102(5–6): 472–478
  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNAdirected nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296
  • Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43(1):68–78
  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799
  • Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101(36):13374–13379
  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36(1):94–104
  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169(16):1664–1672
  • Lan Y, Su N, Shen Y, Zhang R, Wu F, Wan J (2012) Identification of novel MiRNAs and MiRNA expression profiling during grain development in indica rice. BMC Genom 13:264
  • Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136(2):223–236
  • Liu ZH, Ji HQ, Cui ZT, Wu X, Duan LJ, Feng XX, Tang JH (2010) QTL detected for grain-filling rate in maize using a RIL population. Mol Breed 27(1):25–36
  • Luo M, Gao J, Peng H, Pan G, Zhang Z (2014) MiR393-targeted TIR1-like (F-box) gene in response to inoculation to R. Solani in Zea mays. Acta Physiologiae Plantarum 36(5):1283–1291
  • Lur H-S, Setter T (1993) Role of Auxin in Maize Endosperm Development. Plant Physiol 103:273–280
  • Martin-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39
  • Mecchia MA, Debernardi JM, Rodriguez RE, Schommer C, Palatnik JF (2013) MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mech Dev 130(1):2–13
  • Mechin V, Balliau T, Chateau-Joubert S, Davanture M, Langella O, Negroni L, Prioul JL, Thevenot C, Zivy M, Damerval C (2004) A two-dimensional proteome map of maize endosperm. Phytochemistry 65(11):1609–1618
  • Peng T, Sun H, Du Y, Zhang J, Li J, Liu Y, Zhao Y, Zhao Q (2013) Characterization and expression patterns of microRNAs involved in rice grain filling. PLoS One 8(1):e54148
  • Prioul JL, Mechin V, Lessard P, Thevenot C, Grimmer M, Chateau-Joubert S, Coates S, Hartings H, Kloiber-Maitz M, Murigneux A,Sarda X, Damerval C, Edwards KJ (2008) A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnol J 6(9):855–869
  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4): 513–520
  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137(1):103–112
  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115
  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37
  • Takai T, Fukuta Y, Shiraiwa T, Horie T (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Exp Bot 56(418):2107–2118
  • Teoh KT, Requesens DV, Devaiah SP, Johnson D, Huang X, Howard JA, Hood EE (2013) Transcriptome analysis of embryo maturation in maize. BMC Plant Biol 13:19
  • van der Knaap E, Kim JH, Kende H (2000) A novel gibberellin induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122(3):695–704
  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687
  • Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z, Huang H, Cui X (2011) miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot 62(2):761–773
  • Ye R, Yao Q, Xu Z, Xue H (2004) Development of an efficient method for the isolation of factors involved in gene transcription during rice embryo development. Plant J 38:348–357
  • Yi R, Zhu Z, Hu J, Qian Q, Dai J, Ding Y (2013) Identification and expression analysis of microRNAs at the grain filling stage in rice(Oryza sativa L.)via deep sequencing. PLoS One 8(3):e57863
  • Zhang D-F, Li B, Jia G-Q, Zhang T-F, Dai J-R, Li J-S, Wang S-C (2008) Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.). Plant Sci 175(6):809–817
  • Zhang W, Sun P, He Q, Shu F, Wang J, Deng H (2013) Fine mapping of GS2, a dominant gene for big grain rice. Crop J 1(2):160–165

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5c2d78e6-33c7-4d83-adbc-fa4428152900
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.