Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 6 |
Tytuł artykułu

Variation in antioxidant properties and phenolics concentration in different organs of wild growing and greenhouse cultivated Castilleja tenuiflora Benth.

Treść / Zawartość
Warianty tytułu
Języki publikacji
The content of total phenolic compounds and flavonoids was determined in methanol extracts of root, stem, leaves, and inflorescences from wild growing and greenhouse cultivated plants of Castilleja tenuiflora. The antioxidant activity in each extract was evaluated using three in vitro models: scavenging of free radicals with 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), and reducing power by the phosphomolybdenum assay. Both, antioxidant activity and phytochemicals content were influenced significantly (P<0.05) by the source of the plant material and the organ. Cultivated plants had the highest content of phenolic compounds (37.95 mg gallic acid equiv. g⁻¹ dry weight, P<0.05) and the strongest antioxidant activity. Total phenolic compounds content correlated significantly with the antioxidant activity for all studied plant material and organs (P<0.05). TLC profile using DPPH as a detection reagent indicated that the phenylethanoids verbascoside and isoverbascoside are the main contributors to the free-radical scavenging of C. tenuiflora. Cultivated plants of C. tenuiflora are an alternative source of natural antioxidants to wild growing plants. The antioxidant properties of C. tenuiflora may be associated with its traditional use to treat conditions consistent with radical-related diseases (e.g. Inflammation, tumors).
Słowa kluczowe
Opis fizyczny
  • Departamento de Biotecnologia, Cento de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional, P.O.Box 24, 62730 Yautepec, Morelos, Mexico
  • Departamento de Biotecnologia, Cento de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional, P.O.Box 24, 62730 Yautepec, Morelos, Mexico
  • Departamento de Biotecnologia, Cento de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional, P.O.Box 24, 62730 Yautepec, Morelos, Mexico
  • Departamento de Biotecnologia, Cento de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional, P.O.Box 24, 62730 Yautepec, Morelos, Mexico
  • Departamento de Biotecnologia, Cento de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional, P.O.Box 24, 62730 Yautepec, Morelos, Mexico
  • Departamento de Biotecnologia, Cento de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional, P.O.Box 24, 62730 Yautepec, Morelos, Mexico
  • Adedapo AA, Jimoh FO, Koduru S, Masika PJ, Afolayan AJ (2008) Evaluation of the medicinal potentials of the methanol extracts of the leaves and stems of Halleria lucida. Bioresour Technol 99:4158–4163
  • Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-Carranca A (2011) Mexican medicinal plants used for cancer treatment: pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol 133:945–972
  • Anandjiwala S, Srinivasa H, Kalola J, Rajani M (2007) Free-radical scavenging activity of Bergia suffruticosa (Delile) Fenzl. J Nat Med 61:59–62
  • Arthur H, Joubert E, De Beer D, Malherbe CJ, Witthuhn RC (2011) Phenylethanoid glycosides as major antioxidants in Lippia multiflora herbal infusion and their stability during steam pasteurisation of plant material. Food Chem 127:581–588
  • Béjar E, Reyes-Chilpa R, Jiménez-Estrada M (2000) Bioactive compounds from selected plants used in the XVI century mexican traditional medicine. In: Atta R (ed) Studies in natural products chemistry. Elsevier, Amsterdam, pp 799–844
  • Biblioteca Digital de la Medicina Tradicional Mexicana (2011), México
  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30
  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184
  • Cardinali A, Linsalata V, Lattanzio V, Ferruzzi MG (2011) Verbascosides from olive mill waste water: assessment of their bioaccessibility and intestinal uptake using an in vitro digestion/ Caco-2 model system. J Food Sci 76:H48–H54
  • Chen RC, Su JH, Yang SM, Li J, Wang TJ, Zhou H (2002) Effect of isoverbascoside, a phenylpropanoid glycoside antioxidant, on proliferation and differentiation of human gastric cancer cell. Acta Pharmacol Sin 23:997–1001
  • Dembitsky V (2005) Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. Lipids 40:869–900
  • Diouf P, Stevanovic T, Cloutier A (2009) Antioxidant properties and polyphenol contents of trembling aspen bark extracts. Wood Sci Technol 43:457–470
  • Djanaguiraman M, Prasad PVV, Al-Khatib K (2011) Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environ Exp Bot 71:215–223
  • Dykes L, Rooney LW, Waniska RD, Rooney WL (2005) Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J Agric Food Chem 53:6813–6818
  • Ganzera M, Guggenberger M, Stuppner H, Zidorn C (2008) Altitudinal variation of secondary metabolite profiles in flowering heads of Matricaria chamomilla cv. BONA. Planta Med 74(453):457
  • Georgiev M, Alipieva K, Orhan I, Abrashev R, Denev P, Angelova M (2011) Antioxidant and cholinesterases inhibitory activities of Verbascum xanthophoeniceum Griseb. and its phenylethanoid glycosides. Food Chem 128:100–105
  • Gómez-Aguirre YA, Zamilpa A, González M, Trejo-Tapia G (2012) Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides. Ind Crops Prod 36:188–195
  • Graham JG, Quinn ML, Fabricant DS, Farnsworth NR (2000) Plants used against cancer—an extension of the work of Jonathan Hartwell. J Ethnopharmacol 73:347–377
  • Gu L, Wu T, Wang Z (2008) TLC bioautography guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. LWT Food Sci Technol 42:131–136
  • Gyurkovska V, Alipieva K, Maciuk A, Dimitrova P, Ivanovska N, Haas C, Bley T, Georgiev M (2011) Anti-inflammatory activity of Devil’s claw in vitro systems and their active constituents. Food Chem 125:171–178
  • Halliwell B (1994) Free radicals and antioxidants: a personal view. Nutr Rev 52:253–265
  • Holmgren NH (1976) Four new species of mexican Castilleja (subgenus Castilleja, Scrophulariaceae) and their relatives. Brittonia 28:195–208
  • Hung JY, Yang CJ, Tsai YM, Huang HW, Huang MS (2008) Antiproliferative activity of aucubin is through cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Clin Exp Pharmacol Physiol 35:995–1001
  • Jiménez ME, Padilla M, Reyes CR, Espinosa LM, Melendez E, Lira-Rocha A (1995) lridoid glycoside constituents of Castilleja tenuiflora. Biochem Syst Ecol 23:455–456
  • Julsing MK, Quax WJ, Kayser O (2007) The engineering of medicinal plants: prospects and limitations of medicinal plant biotechnology. In: Kayser O, Quax WJ (eds) Medicinal plant biotechnology. From basic research to industrial applications. Wiley, Weinheim, pp 3–8
  • Juntachote T, Berghofer E (2005) Antioxidative properties and stability of ethanolic extracts of Holy basil and Galangal. Food Chem 92:193–202
  • Kawada T, Asano R, Makino K, Sakuno T (2002) Synthesis of isoacteoside, a dihydroxyphenylethyl glycoside. J Wood Sci 48:512–515
  • Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233
  • López-Laredo A, Ramírez-Flores F, Sepúlveda-Jiménez G, Trejo-Tapia G (2009) Comparison of metabolite levels in callus of Tecoma stans (L.) Juss. ex Kunth. cultured in photoperiod and darkness. In Vitro Cell Dev Biol Plant 45:550–558
  • Ma Y-H, Ma F-W, Zhang J-K, Li M-J, Wang Y-H, Liang D (2008) Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Sci 175:761–766
  • Martínez-Bonfil B, Salcedo-Morales G, López-Laredo A, Ventura-Zapata E, Evangelista-Lozano S, Trejo-Tapia G (2011) Shoot regeneration and determination of iridoid levels in the medicinal plant Castilleja tenuiflora Benth. Plant Cell, Tissue Organ Cult 107:195–203
  • Marwah RG, Fatope MO, Mahrooqi RA, Varma GB, Abadi HA, Al-Burtamani SKS (2007) Antioxidant capacity of some edible and wound healing plants in Oman. Food Chem 101:465–470
  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560
  • Mora Izquierdo A, Nicasio Torres M, Sepúlveda Jiménez G, Cruz Sosa F (2011) Changes in biomass allocation and phenolic compounds accumulation due to the effect of light and nitrate supply in Cecropia peltata plants. Acta Physiol Plant 33:2135–2147
  • Nguyen AT, Fontaine J, Malonne H, Claeys M, Luhmer M, Duez P (2005) A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry 66:1186–1191
  • Pasko P, Barton H, Zagrodzki P, Gorinstein S, Folta M, Zachwieja Z (2009) Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem 115:994–998
  • Phoenix G, Press M (2005) Effects of climate change on parasitic plants: the root hemiparasitic Orobanchaceae. Folia Geobot 40:205–216
  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Anal Biochem 269:337–340
  • Rather M, Ganai B, Kamili A, Qayoom M, Akbar S, Masood A, Rasool R, Wani S, Qurishi M (2012) Comparative GC–FID and GC–MS analysis of the mono and sesquiterpene secondary metabolites produced by the field grown and micropropagated plants of Artemisia amygdalina Decne. Acta Physiol Plant 34:885–890
  • Reich E, Schibli M (2007) High-performance thin-layer chromatography for the analysis of medicinal plants. Thieme, New York
  • Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321
  • Rosas G (2007) Establecimiento del cultivo in vitro de Castilleja tenuiflora Benth. Maestría en Ciencias en Desarrollo de Productos Bióticos. Dissertation, Instituto Politécnico Nacional
  • Salcedo-Morales G, Rosas-Romero G, Nabor-Correa N, Bermúdez-Torres K, López-Laredo AR, Trejo-Tapia G (2009) Propagation and conservation of Castilleja tenuiflora Benth. (‘‘hierba del cáncer’’) through in vitro culture. Polibotánica 28:119–137
  • Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276
  • Saxena A, Saxena AK, Singh J, Bhushan S (2010) Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chemico Biol Int 188:580–590
  • Servicio Metereológico Nacional (2011), Mexico
  • Shindo K, Saito E, Sekiya M, Matsui T, Koike Y (2008) Antioxidative activity of the flower of Torenia fournieri. J Nat Med 62:247–248
  • Stancheva N, Weber J, Schulze J, Alipieva K, Ludwig-Müller J, Haas C, Georgiev V, Bley T, Georgiev M (2011) Phytochemical and flow cytometric analyses of Devil’s claw cell cultures. Plant Cell Tissue Organ Cult 105:79–84
  • Sucontphunt A, De-Eknamkul W, Nimmannit U, Dan Dimitrijevich S, Gracy R (2011) Protection of HT22 neuronal cells against glutamate toxicity mediated by the antioxidant activity of Pueraria candollei var. mirifica extracts. J Nat Med 65:1–8
  • Tank DC, Olmstead RG (2008) From annuals to perennials: phylogeny of subtribe Castillejinae (Orobanchaceae). Am J Bot 95:608–625
  • Termentzi A, Kefalas P, Kokkalou E (2006) Antioxidant activities of various extracts and fractions of Sorbus domestica fruits at different maturity stages. Food Chem 98:599–608
  • Vermerris W, Nicholson R (2008) Phenolic compounds and their effects on human health. In: Vermerris W, Nicholson R (eds) Phenolic compound biochemistry. Springer Science?Business Media BV, pp 235–255
  • Vertuani S, Beghelli E, Scalambra E, Malisardi G, Copetti S, Toso RD, Baldisserotto A, Manfredini S (2011) Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetic and pharmaceutical topical formulations. Molecules 16:7068–7080
  • Wagner H, Bladt S (1996) Plant drug analysis. A thin layer chromatography atlas. Springer, Berlin
  • Wang Y (2008) Needs for new plant-derived pharmaceuticals in the post-genome era: an industrial view in drug research and development. Phytochem Rev 7:395–406
  • Wang SY, Zheng W (2001) Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem 49:4882–4977
  • Zidorn C, Schubert B, Stuppner H (2005) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–872
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.