Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 61 | 1 |
Tytuł artykułu

Composition, properties and nutritional aspects of milk fat globule membrane - a review

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the last few years, knowledge on the composition and properties of the milk fat globule membrane (MFGM) increased significantly. It is now recognized that the MFGM is highly complex in structure and composed of different protein and lipid components with specific technological and nutritional properties. As such, MFGM materials have been isolated and characterized as valuable ingredients for incorporation into new food products. However, MFGM are also sensitive to modification during isolation and processing, and care should be taken to standardize the composition and characteristics of the membrane to maintain its unique properties during application in food products. The MFGM is subject to changes in composition and structure from the moment the fat globule leaves the mammary secretory cell. Upon milk harvesting and further milk handling, further changes to the MFGM take place. Depending on the type and degree of treatment, this may involve different physico-chemical interactions between various membrane components, the loss of membrane components and/or adsorption of components from the milk plasma. However, the effects appear to be variable and dependent on physiological (animal) factors, and much remains to be learned about the phenomena on a molecular level.
Słowa kluczowe
Opis fizyczny
  • Dairy Department, National Research Centre, Dokki, Cairo, Egypt
  • 1. Allen J.C., Humphries C., The oxidation of lipids by components of bovine milk-fat globule membrane. J. Dairy Res., 1977, 44, 495–507.
  • 2. Anand B.S., Romero J.J., Sanduja S.K., Lichtenberger L.M., Phospholipid association reduces the gastric mucosal toxicity of aspirin in human subjects. Am. J. Gastroent., 1999, 94, 1818–1822.
  • 3. Anderson M., Milk fat globule membrane composition and dietary change: supplements of coconut oil fed in two physical forms. J. Dairy Sci., 1974, 57, 399–404.
  • 4. Anderson M., Brooker B.E., Loss of material during the isolation of milk fat globule membrane. J. Dairy Sci., 1975, 58, 1442– –1448.
  • 5. Anderson M., Cawston T.E., Reviews of the progress of dairy science. The milk-fat globule membrane. J. Dairy Res., 1975, 42, 459–483.
  • 6. Anderson M., Cheeseman G.C., Stability of the fat globule membrane. 1975, in: Proceedings of the Lipolysis Symposium, IDF Bulletin, No. 86, Brussels: International Dairy Federation, pp. 11–18.
  • 7. Anderson M., Cheeseman G.C., Knight D.J., Shipe, W.F., The effect of ageing cooled milk on the composition of the fat globule membrane. J. Dairy Res., 1972, 39, 95–105.
  • 8. Aoki N., Kuroda H., Urabe M., Taniguchi Y., Adachi T., Nakamura R., Matsuda, T., Production and characterization of monoclonal antibodies directed against bovine milk fat globule membrane (MFGM). Biochim. Biophys. Acta., 1994, 1199, 87–95.
  • 9. Ashwood P., Van de Water J., Is autism an autoimmune disease?. Autoimm. Rev., 2004, 3, 557–562.
  • 10. Asker A.A., Studies of of buffaloe’s milk fat globule membrane. 1974, Ph.D. Thesis, Faculty of Agriculture, Ain Shams Univ., Cairo, Egypt, pp. 95–98.
  • 11. Asker A.A., Hamzawi L.F., Hagrass A.E., Abd-El-Hamid L.B., Studies on buffaloe’s milk fat globule membrane. II. Seasonal variations. Egypt. J. Dairy Sci., 1978, 6, 63–67.
  • 12. Astaire J.C., Ward R. German J.B., Jimenez-Flores R., Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. J. Dairy Sci., 2003, 86, 2297–2307.
  • 13. Atherton J.C., The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Ann. Rev. Pathol.-Mechanisms of Disease, 2003, 1, 63–96.
  • 14. Bailey A., Phillips W., Rutter M., Autism: Towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J. Child Psychol. Psych., 1996, 37, 89–126.
  • 15. Bandyopadhyay A.K., Ganguli N.C., Effect of heating and chilling buffalo milk on the properties of fat globule membrane proteins. J. Food Sci. Tech., 1975, 12, 312–315.
  • 16. Banghart L.R., Clayton C.W., Velarde J., Korobko I.V., Ogg S.L., Jack L.J.W., Vakharia V.N., Mather I.H., Butyrophilin is expressed in mammary epithelial cells from a single-sized messenger RNA as a type I membrane glycoprotein. J. Biol. Chem., 1998, 273,4171–4179.
  • 17. Bansal M.P., Medina D., Expression of fatty acid-binding proteins in the developing mouse mammary-gland. Biochem. Biophys. Res. Commun., 1993, 191, 61–69.
  • 18. Bargmann W., Knoop A., Morphology of lactation: light and electro-microscopic studies on the mammary glands of rats. Z. Zellforsch. Mikrosk. Anat., 1959, 49, 344–388.
  • 19. Bash J.J., Harold M., Farrell J., Greenberg R., Greenberg, Identification of the milk fat globule membrane proteins: I. Isolation and partial characterization of glycoprotein B. Biochim. Biophys. Acta, 1976, 448, 589–598.
  • 20. Baumrucker C.R., Keenan T.W., Membranes of mammary gland. VII. Stability of milkfat globule membrane in secreted milk. J. Dairy Sci., 1973, 56, 1092–1094.
  • 21. Baumy J.J., Gestin L., Fauquant J., Boyaval E., Maubois J.L., Technologies de purification des phospholipides du lactosérum. Process, 1990, 1047, 29–33.
  • 22. Becart J., Chevalier C., Biesse J., Quantitative analysis of phospholipids by HPLC with a light scattering evaporating detector- Application to raw materials for cosmetic use. J. High Res. Chromatogr., 1990, 13, 126–129.
  • 23. Berer, K., Schubart A., Williams K.R., Linington C., Pathological consequences of molecular mimicry between myelin oligodendrocyte glycoprotein (MOG) and butyrophilin (BTN) in experimental autoimmune encephalomyelitis (EAE). Immunology, 2005, 116, 42.
  • 24. Berglund L., Petersen T.E., Rasmussen J.T., Structural characterization of bovine CD36 from the milk fat globule membrane. Biochim. Biophys. Acta, 1996, 1309, 63–68.
  • 25. Berglund L., Rasmussen J.T., Andersen M.D., Rasmussen M.S., Petersen T.E., Purification of the bovine xanthine oxidoreductase from milk fat globule membranes and cloning of complementary deoxyribonucleic acid. J. Dairy Sci., 1996, 79, 198–204.
  • 26. Bhavadasan M.K., Ganguli N.C., Dependence of enzyme activities associated with milk fat globule membrane on the procedure used for membrane isolation. Indian J. Biochem. Biophys., 1976, 13, 252–254.
  • 27. Bhavadasan M.K., Ganguli N.C., Physico-chemical properties of milk fat globule membrane proteins: dependence on the procedure of isolation. Indian J. Dairy Sci., 1977, 30, 297–303.
  • 28. Bibel D.J., Aly R., Shinefield H.R., Inhibition of microbial adherence by sphinganine. Can. J. Microbiol., 1992, 38, 983–985.
  • 29. Bingham E.W., Malin E.L., Alkaline phosphatase in the lactating bovine mammary gland and the milk fat globule membrane. Release by phosphatidylinositol-specific phospholipase C. Comp. Biochem. Physiol. Part B: Biochemistry and Molecular Biology, 1992, 102, 213–218.
  • 30. Bitman J., Wood D.L., Changes in milk fat phospholipids during lactation. J. Dairy Sci., 1990, 73, 1208–1216.
  • 31. Blusztajn J.K., Developmental neuroscience – Choline, a vital amine, Science, 1998, 281, 794–795.
  • 32. Boyd L.C., Drye N.C., Hansen A.P., Isolation and characterization of whey phospholipids. J. Dairy Sci., 1999, 82, 2550–2557.
  • 33. Bracco U., Hidalgo J., Bohren H., Lipid composition of the fat globule membrane of human and bovine milk. J. Dairy Sci., 1972, 55, 165–172.
  • 34. Buchheim W., Membranes of milk fat globules, ultrastructural, biochemical and technological aspects. Kieler Milchwirtschaftliche Forschungsberichte, 1986, 38, 227–246.
  • 35. Buchheim W., Welsch U., Huston G., Glycoprotein filament removal from human milk fat globules by heat treatment. Pediatrics, 1988a, 81, 141–146.
  • 36. Buchheim W., Welsch U., Patton S., Electron microscopy and carbohydrate histochemistry of the human milk fat globule membrane. 1988b, in: Biology of Human Milk (ed. L.A. Hnason). New York, NY, Raven Press, pp. 27–44.
  • 37. Butcher P.J., Distribution of multiple-sclerosis in relation to dairy-industry and milk consumption. New Zeal. Med. J., 1976, 83, 427–430.
  • 38. Butcher P.J., Milk consumption and multiple-sclerosis – An etiologic hypothesis. Med. Hypoth., 1986, 19, 169–178.
  • 39. Campagna S., Cosette P., Molle G., Gaillard J.L., Evidence for membrane affinity of the C-terminal domain of bovine milk PP3 component. Biochim. Biophys. Acta – Biomembranes, 2001, 1513, 217–222.
  • 40. Campagna S., Mathot A.G., Fleury Y., Girardet J.M., Gaillard J.L., Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component- 3 of proteose peptone. J. Dairy Sci., 2004, 87, 1621–1626.
  • 41. Cano-Ruiz M.E., Richter R.L., Effect of homogenization pressure on the milkfat globule membrane proteins. J. Dairy Sci., 1997, 80, 2732–2739.
  • 42. Carlson S.E., Montalto M.B., Ponder D.L., Werkman S.H., Korones S.B., Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids. Pediatric Res., 1998, 44, 491–498.
  • 43. Cavaletto M., Giuffrida M.G., Conti A., Milk Fat Globule Membrane Components – A Proteomic Approach. 2006, in: Bioactive Components of Milk (ed. Z. Bosze). Springer-Verlag New York, LLC, pp. 129–141.
  • 44. Chandan R.C., Cullen J., Chapman D., Physicochemical analysis of the bovine milk fat globule membrane. III. Proton magnetic resonance spectroscopy. J. Dairy Sci., 1972, 55, 1232–1236.
  • 45. Chandan R.C., Cullen J., Ladbrooke B.D., Chapman D., Physicochemical analyses of bovine milk fat globule membrane. I. Differential thermal analysis. J. Dairy Sci., 1971, 54, 1744–1751.
  • 46. Christie W.W., Isolation, separation, identification and structural analysis of lipids. 2003, in: Lipid analysis (3 rd ed P.J. Barnes & Associates). Oily Press, Bridgwater, UK, pp. 91–102.
  • 47. Coonrod J.D., Yoneda K., Detection and partial characterization of antibacterial factors in alveolar lining material of rats. J. Clin. Invest., 1983, 71, 129–141.
  • 48. Corredig M., Dalgleish D.G., Effect of different heat treatments on the strong binding interactions between whey proteins and milk fat globules in whole milk. J. Dairy Res., 1996, 63, 441––449.
  • 49. Corredig M., Dalgleish D.G., Isolates from industrial buttermilk: Emulsifying properties of materials derived from the milk fat globule membrane. J. Agric. Food Chem., 1997, 45, 4595–4600.
  • 50. Corredig M., Dalgleish D.G., Buttermilk properties in emulsions with soybean oil as affected by fat globule membrane-derived proteins. J. Food Sci., 1998a, 63, 476–480.
  • 51. Corredig M., Dalgleish D.G., Effect of heating of cream on the properties of milk fat globule membrane isolates. J. Agric. Food Chem., 1998b, 46, 2533–2540.
  • 52. Corredig M., Dalgleish D.G., Characterization of the interface of an oil-in-water emulsion stabilized by milk fat globule membrane material. J. Dairy Res., 1998c, 65, 465–477.
  • 53. Corredig M., Roesch R.R., Dalgleish D.G., Production of a novel ingredient from buttermilk. J. Dairy Sci., 2003, 86, 2744–2750.
  • 54. Cover T.L., Blaser M.J., Heliobacter pylori and gastriduodenal disease. Ann. Rev. Med., 1992, 43, 135–145.
  • 55. Crook T., Petrie W., Wells C., Massari D.C., Effects of phosphatidylserine in Alzheimer disease. Psychopharmacol. Bull., 1992, 28, 61–66.
  • 56. Dalgleish D.G., Denaturation and aggregation of serum proteins and caseins in heated milk. J. Agric. Food Chem., 1990, 38, 1995–1999.
  • 57. Dalgleish D.G., Banks J.M., The formation of complexes between serum proteins and fat globules during heating of whole milk. Milchwissenschaft, 1991, 46, 75–78.
  • 58. Daniels M.J., Wang Y.M., Lee M.Y., Venkitaraman A.R., Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science, 2004, 306, 876–879.
  • 59. Danthine S., Blecker C., Paquot M., Innocente, N., Deroanne C., Progress in milk fat globule membrane research. A review. Lait, 2000, 80, 209–222.
  • 60. Dapper C.H., Valivullah H.M., Keenan T.W., Use of polar aprotic solvents to release membranes from milk lipid globules. J. Dairy Sci., 1987, 70, 760–765.
  • 61. Deeth H.C., The role of phospholipids in the stability of milk fat globules. Aust. J. Dairy Tech., 1997, 52, 44–46.
  • 62. Deeth H.C., Fitz-Gerald C.H., Lipolysis in dairy products: a review. Aust. J. Dairy Tech., 1976, 31, 53–64.
  • 63. Deeth H.C., Fitz-Gerald C.H., Effects of mechanical agitation of raw milk on the milk-fat globule in relation to the level of induced lipolysis. J. Dairy Res., 1978, 45, 373–380.
  • 64. Deeth H.C., Fitz-Gerald C.H., Lipolytic enzymes in milk and milk products. 1995, in: Advanced Dairy Chemistry, Vol. 2: Lipids (ed. P.F. Fox). Chapman & Hall, London, pp. 247–308.
  • 65. Dewettinck K., Rombaut R., Thienpont N., Trung Le T., Messens K., Camp J.V., Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J., 2008, 18, 436–457.
  • 66. Diaz-Maurino T., Nieto M., Milk fat globule membranes: Inhibition by sucrose of the alkaline phosphomonoesterase. Biochim. Biophys. Acta, 1976, 448, 234–244.
  • 67. Dillehay D.L., Webb S.K., Schmelz E.M., Merrill A.H., Dietary sphingomyelin inhibits 1, 2-dimethylhydrazine-induced coloncancer in CF1 mice. J. Nutr., 1994, 124, 615–620.
  • 68. Dowben R.M., Brunner J.R., Philpott D.E., Studies on milk fat globule membranes. Biochim. Biophys. Acta (BBA) – Biomembranes, 1967, 135, 1–10.
  • 69. Duan R.D., Anticancer compounds and sphingolipid metabolism in the colon. In vivo, 2005, 19, 293–300.
  • 70. Duan R.D., Cheng Y.J., Hansen G., Hertervig E., Liu J.J., Syk I., Purification, localization, and expression of human intestinal alkaline sphingomyelinase. J. Lipid Res., 2003, 44, 1241–1250.
  • 71. Duan R.D., Nyberg L., Nilsson A., Alkaline sphingomyelinase activity in rat gastrointestinal tract: Distribution and characteristics. Biochim. Biophys. Acta, 1995, 1259, 49–55.
  • 72. Duivenvoorden I., Voshol P.J., Rensen P.C.N., Van Duyvenvoorde W., Romijn J.A., Emeis J.J., Dietary sphingolipids lower plasma cholesterol and triacylglycerol and prevent liver steatosis in APOE 3 Leiden mice. Am. J. Clin. Nutr., 2006, 84, 312–321.
  • 73. Eckhardt E.R.M., Wang D.Q.H., Donovan J.M., Carey M.C., Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology, 2002, 122, 948–956.
  • 74. Eisenberg S., Stein Y., Stein O., Phospholipases in arterial tissue. IV. The role of phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in the regulation of phospholipid composition in the normal human aorta with age. J. Clin. Invest., 1969, 48, 2320–2329.
  • 75. Erickson D.R., Dunkley W.L., Smith L.M., Tocopherol distribution in milk fractions and its relation to antioxidant activity. J. Food Sci., 1964, 29, 269–275.
  • 76. Evers J.M., Determination of free fatty acids in milk using the BDI method – some practical and theoretical aspects. Int. Dairy J., 2003, 13, 111–121.
  • 77. Evers J.M., The milkfat globule membrane – Compositional and structural changes post secretion by the mammary secretory cell. Int. Dairy J., 2004a, 14, 661–674.
  • 78. Evers J.M., The milkfat globule membrane – Methodologies for measuring milkfat globule (membrane) damage. A review. Int. Dairy J., 2004b, 14, 747–760.
  • 79. Evers J.M., Palfreyman K.R., Free fatty acid levels in New Zealand raw milk. Aust. J. Dairy Tech., 2001, 56, 198–201.
  • 80. Fantini J., Hammache D., Delezay O., Yahi N., Andrebarres C., Ricolattes I., Synthetic soluble analogs of galactosylceramide (GalCer) bind to the V3 domain of HIV-1 gp120 and inhibit HIV-1-induced fusion and entry. J. Biol. Chem., 1997, 272, 7245–7252.
  • 81. Fauquant C., Briard-Bion, V., Leconte N., Guichardant M., Michalski M., Membrane phospholipids and sterols in microfiltered milk fat globules. Eur. J. Lipid Sci. Tech., 2007, 109, 1167–1173.
  • 82. Fink A., Kessler H.G., Changes in the fat globule membrane produced by heating. Milchwissenschaft, 1985a, 40, 261–264.
  • 83. Fink A., Kessler H.G., The effect of heating on the storage stability of unhomogenized cream (30%). Milchwissenschaft, 1985b, 40, 326–328.
  • 84. Fong B.Y., Norris C.S., MacGibbon A.K.H., Protein and lipid composition of bovine milk-fat-globule membrane. Int. Dairy J., 2007, 17, 275–288.
  • 85. Fox J.G., Wang T.C., Inflammation, atrophy, and gastric cancer. J. Clin. Invest., 2007, 117, 60–69.
  • 86. Franke W.W., Heid H.W., Grund C., Winter S., Freudenstein C., Schmid E., Jarasch E.D., Keenan T.W., Antibodies to the major insoluble milk fat globule membrane-associated protein: specific location in apical regions of lactating epithelial cells. J. Cell Biol., 1981, 89, 485–494.
  • 87. Freudenstein C., Keenan T.W., Eigel W.N., Sasaki M., Stadler J., Franke W.W., Preparation and characterisation of the inner coat material associated with fat globule membranes from bovine and human milk. Exp. Cell Res., 1979, 118, 277–294.
  • 88. Gindin J., Naor S., Stovicheck Y., Dushenat M., Konstantin N., Phosphatidylserine effect on functioning and general condition of Alzheimer’s disease patients. J. Am. Geriatrics Soc., 1998, 46, S100.
  • 89. Girardet J.M., Coddeville B., Plancke Y., Strecker G., Campagna S., Spik G., Structure of glycopeptides isolated from bovine milk component PP3. Eur. J. Biochem., 1995, 234, 939–946.
  • 90. Goff H.D., Hill A.R., Chemistry and Physics. 1993, in: Dairy Science and Technology Handbook I. Principles and Properties (ed. Hui). VCH Publishers, New York, pp. 1–81.
  • 91. Goudedranche H., Fauquant J., Maubois J.L., Fractionation of globular milk fat by membrane microfiltration. Lait, 2000, 80, 93–98.
  • 92. Greenbank G.R., Pallansch M.J., Migration of phosphatides in processing dairy products. J. Dairy Sci., 1961, 44, 1597–1602.
  • 93. Greenwalt D.E., A one-step procedure for purification of bovine mammary epithelial cell CD36. Protein Expr. Purif., 1993, 4, 72–75.
  • 94. Guggenmos J., Schubart A.S., Ogg S., Andersson M., Olsson T., Mather I.H., Antibody cross-reactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis. J. Immunol., 2004, 172, 661–668.
  • 95. Guinard-Flament J., Michalski M.C., Rulquin H., Evolution of milk fat content and fat globule diameter according to milking time in dairy cows. Rencontres autour des Recherches sur les Ruminants, 2001, 8, 92.
  • 96. Guo Z., Vikbjerg A.F., Xu X.B., Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol. Adv., 2005, 23, 203–259.
  • 97. Hancock J.T., Salisbury V., Ovejero-Boglione M.C., Cherry R., Hoare C., Eisenthal R., Antimicrobial properties of milk: Dependence on presence of xanthine oxidase and nitrite. Antimicrob. Agents Chemother., 2002, 46, 3308–3310.
  • 98. Harrison R., Structure and function of xanthine oxidoreductase: Where are we now ?. Free Rad. Biol. Med., 2002, 33, 774–797.
  • 99. Harrison R., Physiological roles of xanthine oxidoreductase. Drug Metab. Rev., 2004, 36, 363–375.
  • 100. Harrison R., Milk xanthine oxidase: Properties and physiological roles. Int. Dairy J., 2006, 16, 546–554.
  • 101. Harrison R., Higginbotham J.D., Newman R., Sialoglycopeptides from bovine milk fat globule membrane. Biochim. Biophys. Acta, 1975, 389, 449–463.
  • 102. Hashioka S., Monji A., Han Y.H., Nakanishi H., Kanba S., Potentiality of phosphatidylserine (PS)-liposomes for treatment of Alzheimer’s disease. J. Neuroimmunol., 2004, 154, 119.
  • 103. Heida H.W., Keenan T.W., Intracellular origin and secretion of milk fat globules. Eur. J. Cell Biol., 2005, 84, 245–258.
  • 104. Heiss W.D., Kessler J., Mielke R., Szelies B., Herholz K., Longterm effects of phosphatidylserine, pyrinitol, and coginitive training in Alzheimer disease – A neuropsychological, EEG, and PET investigation. Dementia, 1994, 5, 88–98.
  • 105. Henson A.F., Holdsworth G., Chandan R.C., Physicochemical analyses of bovine milk fat globule membrane. II. Electron microscopy. J. Dairy Sci., 1971, 54, 1752–1763.
  • 106. Hirmo S., Kelm, S., Iwersen, M., Hotta K., Goso Y., Ishihara K., Suguri T., Morita M., Wadstrom T., Schauer R., Inhibition of Helicobacter pylori sialic acid-specific haemagglutination by human gastrointestinal mucins and milk glycoproteins. FEMS Immunol. Med. Microbiol., 1998, 20, 275–281.
  • 107. Hofi A.A., Hamzawi L.F., Mahran G.A., Asker A.A., Studies on buffalo milk fat globule membrane. I. Effect of stage of lactation. Egypt. J. Dairy Sci., 1977, 5, 235–240.
  • 108. Houlihan A.V., Enzymatic activity other than lipase. IDF Bulletin, 1992, No. 271, 21–25. Brussels: International Dairy Federation. 109. Houlihan A.V., Goddard P.A., Nottingham S.M., Kitchen B.J., Masters C.J., Interactions between the bovine milk fat globule membrane and skim milk components on heating whole milk. J. Dairy Res., 1992, 59, 2, 187–195.
  • 110. Huang T.C., Kuksis A., A comparative study of the lipids of globule membrane and fat core and of the milk serum of cows. Lipids, 1967, 2, 453–460.
  • 111. Hui S.W., Boni L.T., Membrane fusion induced by polyethylene glycol. 1991, in: Membrane Fusion (eds. J. Wilschut, D. Hoekstra). Marcel Dekker Inc., New York, pp. 231–253.
  • 112. Hvarregaard J., Andersen M.H., Berglund L., Rasmussen J.T., Petersen T.E., Characterization of glycoprotein PAS-6/7 from membranes of bovine milk fat globules. Eur. J. Biochem., 1996, 240, 628–636.
  • 113. Iametti S., Versuraro L., Tragna S., Giangiacomo R., Bonomi F., Surface properties of the fat globule in treated creams. Int. Dairy J., 1997, 7, 375–380.
  • 114. Innocente N., Blecker C., Deroanne C., Paquot M., Langmuir film balance study of the surface properties of a soluble fraction of milk fat-globule membrane. J. Agric. Food Chem., 1997, 45, 1559–1563.
  • 115. Ismail A.A., El-ghanam M.S., Sirry L., Comparative study between some buffalo and cow cream properties II. Effect of ageing at 5°C and at room temperature. Alexandrian J. Agric. Res., 1972, 20, 75–82.
  • 116. Ito O., Kamata S., Hayashi M., Ushiyama K., Milk fat globule membrane substances inhibit mouse intestinal beta-glucuronidase. J. Food Sci., 1993, 58, 753–755.
  • 117. Jenkins K.J., Kramer J.K., Effect of excess dietary manganese on lipid composition of calf blood plasma, heart, and liver. J. Dairy Sci., 1988, 71, 435–441.
  • 118. Jensen R.G., The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci., 2002, 85, 295–350.
  • 119. Johns T.G., Bernard C.C.A., The structure and function of myelin oligodendrocyte glycoprotein. J. Neurochem., 1999, 72, 1–9.
  • 120. Kanno C., Emulsifying properties of bovine-milk fat globulemembrane in milk-fat emulsion-conditions for the reconstitution of milk-fat globules. J. Food Sci., 1989, 54, 1534–1539.
  • 121. Kanno C., Secretory membranes of the lactating mammary gland. Protoplasma, 1990, 159, 184–208.
  • 122. Kanno C., Kim D.H., A simple procedure for the preparation of bovine milk fat globule membrane and a comparison of its composition, enzymatic activities, and electrophoretic properties with those prepared by other methods. Agric. Biol. Chem., 1990, 54, 2845–2854.
  • 123. Kanno C., Shimomura Y., Takano E., Physicochemical properties of milk-fat emulsions stabilized with bovine-milk fat globule- membrane. J. Food Sci., 1991, 56, 1219–1223.
  • 124. Karlsson K.A., Animal glycosphingolipids as membrane attachment sites for bacteria. Ann. Rev. Biochem., 1989, 58, 309–350.
  • 125. Keenan T.W., Milk lipid globules and their surrounding membrane: A brief history and perspectives for future research. J. Mammary Gland Biology & Neoplasia, 2001, 6, 365–371.
  • 126. Keenan T.W., Dylewski D.P., Aspects of intracellular transit of serum and lipid phases of milk. J. Dairy Sci., 1985, 68, 1025–1040.
  • 127. Keenan T.W., Dylewski D.P., Intracellular origin of milk lipid globules and the nature and structure of the milk fat globule membrane. 1995, in: Advanced Dairy Chemistry, Lipids, vol. 2, (ed. P.F. Fox).Chapman and Hall, London, pp. 89–130.
  • 128. Keenan T.W., Mather I.H., Milk fat globule membrane. 2002, in: Encyclopedia of Dairy Sciences (H. Roginski, J.W. Fuquay, P.F. Fox). Academic Press, London, pp. 1568–1576.
  • 129. Keenan T.W., Patton S., The Structure of Milk: Implications for sampling and storage. The Milk Lipid Globule Membrane. 1995, in: Handbook of Milk Composition (ed. R.G. Jensen). Academic Press, Inc., New York, pp. 5–50.
  • 130. Keenan T.W., Dylewski D.P., Woodford T.A., Ford R.H., Origin of the milk fat globules and the nature of the milk fat globule membrane. 1983, in: Developments in Dairy Chemistry (ed. P.F. Fox). Applied Science Publishers, New York, pp. 83–118.
  • 131. Keenan T.W., Mather I.H., Dylewski D.P., Physical equilibria: lipid phase. 1988, in: Fundamentals of Dairy Chemistry (ed. N.P. Wong).Van Nostrand Reinhold Co., New York, pp. 511–582.
  • 132. Keenan T.W., Morre D.J., Olsen D.E., Yunghans W.N., Patton S., Biochemical and morphological comparison of plasma membrane and milk fat globule membrane from bovine mammary gland. J. Cell Biol., 1970, 44, 80–93.
  • 133. Khodaparast-Sharifi S.H., Snow L.D., Levamisole inhibition of alkaline phosphatase and 5′-nucleotidase of bovine milk fat globule membranes. Int. J. Biochem., 1989, 21, 401–405.
  • 134. Kidd P.M., Phospholipids: Versatile nutraceutical ingredients for functional foods. Funct. Foods Nutraceut., 2002, 12, 30––40.
  • 135. Kim D.H., Kanno C., Mizokami Y., Purification and characterization of major glycoproteins, PAS-6 and PAS-7 from bovine milk fat globule membrane. Biochim. Biophys. Acta, 1992, 1122, 203–211.
  • 136. Kingsley M., Effects of phosphatidylserine supplementation on exercising humans. Sports Med., 2006, 36, 657–669.
  • 137. Kinsella J.E., The milk fat globule membrane. A natural readymade package. Am. Dairy Rev., 1970, 32, 6, 73–74.
  • 138. Kinsella J.E., Houghton G., Phospholipids and fat secretion by cows on normal and low fiber diets: lactational trends. J. Dairy Sci., 1975, 58, 1288–1293.
  • 139. Kisel M.A., Kulik L.N., Tsybovsky I.S., Vlasov A.P., Vorob’yov M.S., Kholodova E.A., Zabarovskaya Z.V., Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: Studies in the rat. Int. J. Pharmac., 2001, 216, 105–114.
  • 140. Kivinen A., Salminen S., Homer D., Vapaatalo H., Gastroprotective effect of milk phospholipids, butter serum-lipids and butter serum on ethanol and acetylsalicylic-acid induced ulcers rats. Milchwissenschaft, 1992, 47, 573–575.
  • 141. Kivinen A., Tarpila S., Kiviluoto T., Mustonen H., Kivilaakso E., Milk and egg phospholipids act as protective surfactants against luminal acid in Necturus gastric mucosa. Alim. Pharmacol. Therapeut., 1995, 9, 685–691.
  • 142. Kivinen A., Tarpila S., Salminen S., Vapaatalo H., Gastroprotection with milk phospholipids-A 1st human study. Milchwissenschaft, 1992, 47, 694–696.
  • 143. Kolevzon A., Gross R., Reichenberg A., Prenatal and perinatal risk factors for autism – A review and integration of findings. Arch. Pediatr. Adol. Med., 2007, 161, 326–333.
  • 144. Koops J., Tarassuk N.P., The effect of various processing treatments on the partitioning of phosphatides between the fat phase and the milk plasma. Neth. Milk Dairy J., 1959, 13, 3, 180–189.
  • 145. Kromminga A., Grosse R., Langen P., Lezius A., Spener F., Growth inhibition by mutant fatty acid binding protein. Biol. Chem. Hoppe-Seyler, 1990, 371, 762.
  • 146. Kvistgaard A.S., Pallesen L.T., Arias C.F., Lopez S., Petersen T.E., Heegaard C.W., Inhibitory effects of human and bovine milk constituents on rotavirus infections. J. Dairy Sci., 2004, 87, 4088–4096.
  • 147. Laloy E., Vuillemard J.C., Soda M.E., Simard R.E., Influence of the fat content of Cheddar cheese on retention and localization of starters. Int. Dairy J., 1996, 6, 729–740.
  • 148. Lauer K., Diet and multiple sclerosis. Neurology, 1979, 49, S55-S61.
  • 149. Lee J.Y., Obeid L.M., Ceramide, aging and cellular senescense. 1997, in: Sphingolipid-Mediated Signal Transduction (ed. Y.A. Hannym). Chapman & Hall, New York, USA, pp. 61–75.
  • 150. Lee S.J., Sherbon J.W., Chemical changes in bovine milk fat globule membrane caused by heat treatment and homogenization of whole milk. J. Dairy Res., 2002, 69, 555–567.
  • 151. Lee S.Y., Morr C.V., Fixation and staining milkfat globules in cream for transmission and scanning electron microscopy. J. Food Sci., 1992, 57, 887–891.
  • 152. Lemonnier L.A., Dillehay D.L., Vespremi M.J., Abrams J., Brody E., Schmelz E.M., Sphingomyelin in the suppression of colon tumors: Prevention versus intervention. Arch. Biochem. Biophys., 2003, 419, 129–138.
  • 153. Levi M., Jameson D.M., Vandermeer B.W., Role of BBM lipid composition and fluidity in impaired renal PI transport in aged rat. Am. J. Physiol., 1989, 256, F85-F94.
  • 154. Lilbaek H.M., Broe M.L., Hoier E., Fatum T.M., Ipsen R., Sorensen N.K., Improving the yield of Mozzarella cheese by phospholipase treatment of milk. J. Dairy Sci., 2006, 89, 4114–4125.
  • 155. Lopez C., Dufour E., The composition of the milk fat globule surface alters the structural characteristics of the coagulum. J. Colloid & Interface Sci., 2001, 233, 241–249.
  • 156. Lopez C., Bourgaux C., Lesieur P., Riaublanc A., Ollivon M., Milk fat and primary fractions obtained by dry fractionation 1.Chemical composition and crystallization properties. Chem. Physics Lipids, 2006, 144, 17–33.
  • 157. Lopez C., Camier B., Gassi J.Y., Development of the milk fat microstructure during the manufacture and ripening of Emmental cheese observed by confocal laser scanning microscopy. Int. Dairy J., 2007, 17, 235–247.
  • 158. Lucey J.A., Munro P.A., Singh H., Rheological properties and microstructure of acid milk gels as affected by fat content and heat treatment. J. Dairy Sci., 1998, 63, 660–664.
  • 159. Ma Y., Barbano D.M., Gravity separation of raw bovine milk: Fat globule size distribution and fat content of milk fractions. J. Dairy Sci., 2000, 83, 1719–1727.
  • 160. Macej O.D., Jovanovic S.T., Denin Djurdjevic J.D., The influence of high temperatures on milk proteins. Hemijska Industrija, 2002, 56, 3, 123–132.
  • 161. Malosse D., Perron H., Correlation-analysis between bovine populations, other farm-animals, house pets, and multiplesclerosis prevalence. Neuroepidemiology, 1993, 12, 15–27.
  • 162. Malosse D., Perron, H., Sasco A., Seigneurin J.M., Correlation between milk and dairy product consumption and multiplesclerosis prevalence – A world study. Neuroepidemiology, 1992, 11, 304–312.
  • 163. Mana P., Goodyear M., Bernard C., Tomioka R., Freire-Garabal M., Linares D., Tolerance induction by molecular mimicry: Prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. Int. Immunol., 2004, 16, 489–499.
  • 164. Mangino M.E., Brunner J.R., Molecular weight profile of fat globule membrane proteins. J. Dairy Sci., 1975, 58, 313–318.
  • 165. Martin H.M., Hancock J.T., Salisbury V., Harrison R., Role of xanthine oxidoreductase as an antimicrobial agent. Infection & Immunity, 2004, 72, 4933–4939.
  • 166. Mather I.H., Proteins of the milk-fat-globule membrane as markers of mammary epithelial cells and apical plasma membrane. 1987, in: The Mammary Gland, Development, Regulation and Function (eds. M.C. Neville, C.W. Daniel). Plenum Press, New York, pp. 217–267.
  • 167. Mather I.H., A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci., 2000, 83, 203–247.
  • 168. Mather I.H., Keenan T.W., Function of endomembranes and the cell surface in the secretion of organic milk constituents. 1983, in: Biochemistry of Lactation (ed. T.B. Mepham). Elsevier, Amsterdam, pp. 231–283.
  • 169. Mather I.H., Keenan T.W., Origin and secretion of milk lipids. J. Mammary Gland Biology & Neoplasia, 1998, 3, 259–273.
  • 170. Mather I.H., Weber K., Keenan T.W., Membranes of mammary gland. XII. Loosely associated proteins and compositional heterogeneity of bovine milk fat globule membrane. J. Dairy Sci., 1977, 60, 3, 394–402.
  • 171. McDaniel M.A., Maier S.F., Einstein G.O., “Brain-Specific” nutrients: A memory cure? Nutrition, 2003, 19, 957–975.
  • 172. McPherson A.V., Kitchen B.J., Reviews of the progress of dairy science: The bovine milk fat globule membrane – its formation, composition, structure and behaviour in milk and dairy products. J. Dairy Res., 1983, 50, 107–133.
  • 173. McPherson A.V., Dash M.C., Kitchen B.J., Isolation and composition of milk fat globule membrane material. I. From pasteurized milks and creams. J. Dairy Res., 1984, 51, 279–287.
  • 174. Merrill A.H., Schmelz E.M., Sullards M.C., Dillehay D.L., Sphingolipids: Novel inhibitors of colon carcinogenesis: Dairy nutrition for a healthy future. Bulletin-Int. Dairy Fed., 2001, 363, 27–29.
  • 175. Michalski M.C., Camier B., Briard V., Leconte N., Gassi J.Y., Goudédranche H., The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Lait, 2004, 84, 343–358.
  • 176. Michalski M.C., Camier B., Gassi J.Y., Briard-Bion V., Leconte N., Famelart M.H., Functionality of smaller vs control native milk fat globules in Emmental cheeses manufactured with adapted technologies. Food Res. Int., 2007, 40, 191–202.
  • 177. Michalski M.C., Cariou R., Michel F., Garnier C., Native vs. damaged milk fat globules: membrane properties affect the viscoelasticity of milk gels. J. Dairy Sci., 2002a, 85, 2451–2461.
  • 178. Michalski M.C., Gassi J.Y., Famelart M.H., Leconte N., Camier B., The size of native milk fat globules affects physicochemical and sensory properties of Camembert cheese. Lait, 2003, 83, 131–143.
  • 179. Michalski M.C., Michel F., Briard V., On the size distribution and zeta-potential of homogenized milk fat globules. 2002b, in: Food Emulsions and Dispersions (ed. M. Anton). Research. Signpost, Kerala, India, pp. 49–65.
  • 180. Michel M.C., Mulders A.C.M., Jongsma M., Alewijnse A.E., Peters S.L.M., Vascular effects of sphingolipids. Acta Paediatrica, 2007, 96, 44–48.
  • 181. Molina E., Álvarez M.D., Ramos M., Olano A., Lopez-Fandino R., Use of high-pressure-treated milk for the production of reduced-fat cheese, Int. Dairy J., 2000, 10, 467–475.
  • 182. Morin P., Britten M., Jimenez-Flores R., Pouliot Y., Microfiltration of buttermilk and washed cream buttermilk for concentration of milk fat globule membrane components. J. Dairy Sci., 2007, 90, 2132–2140.
  • 183. Morin P., Jimenez-Flores R., Pouliot Y., Effect of temperature and pore size on the fractionation of fresh and reconstituted buttermilk by microfiltration. J. Dairy Sci., 2004, 87, 267–273.
  • 184. Morin P., Jimenez-Flores R., Pouliot Y., Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. Int. Dairy J., 2007, 17, 1179–1187.
  • 185. Morin P., Pouliot Y., Jimenez-Flores R., A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. J. Food Eng., 2006, 77, 521–528.
  • 186. Moss M., Freed D., The cow and the coronary: Epidemiology, biochemistry and immunology. Int. J. Cardiology, 2003, 87, 203–216.
  • 187. Mulder H., Walstra P., The Milk Fat Globule Emulsion Science as Applied to Milk Products and Comparable Foods. 1974, Pudoc, Wageningen, The Netherlands, pp. 163–192.
  • 188. Nejjar Y., Paquet D., Aubert F., Linden G., The pp3 component of the proteose-peptone-extraction from unheated skim milk. Milchwissenschaft, 1990, 45, 84–87.
  • 189. Nejjar Y., Paquet D., Godbillon G., Deaut J.Y.L., Immunological relationship between the hydrophobic fraction of proteosepeptone and the milk fat globule membrane of bovine milk. Int. J. Biochem., 1986, 18, 893–900.
  • 190. Newburg D.S., Chaturvedi P., Neutral glycolipids of human and bovine milk. Lipids, 1992, 27, 923–927.
  • 191. Newman R.A., Harrison R., Characterisation of the surface of bovine milk fat globule membrane using microelectrophoresis. Biochim. Biophys. Acta, 1973, 298, 798–809.
  • 192. Nielsen C.S., Bjerrum O.J., Crossed immunoelectrophoresis of bovine milk fat globule membrane protein solubolized with non-ionic detergent. Biochim. Biophys. Acta, 1977, 466, 496–509.
  • 193. Nielsen R.L., Andersen M.H., Mabhout P., Berglund L., Petersen T.E., Rasmussen J.T., Isolation of adipophilin and butyrophilin from bovine milk and characterization of a cDNA encoding adipophilin. J. Dairy Sci., 1999, 82, 2543–2549.
  • 194. Nilsson A., Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim. Biophys. Acta, 1968, 164, 575–584.
  • 195. Nilsson A., Metabolism of cerebrosides in the intestinal tract of the rat. Biochim. Biophys. Acta, 1969, 187, 113–121.
  • 196. Nilsson A., Duan R.D., Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res., 2006, 47, 154–171.
  • 197. Noh S.K., and Koo S.I., Egg sphingomyelin lowers the, lymphatic absorption of cholesterol and alpha-tocopherol in rats. J. Nutr., 2003, 133, 3571–3576.
  • 198. Noh S.K., Koo S.I., Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. J. Nutr., 2004, 134, 2611–2616.
  • 199. Nyberg L., Duan R.D., Nilsson A., A mutual inhibitory effect on absorption of sphingomyelin and cholesterol. J. Nutr. Biochem., 2000, 11, 244–249
  • 200. Nyberg L., Nilsson A., Lundgren P., Duan R.D., Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J. Nutr. Biochem., 1997, 8, 112–118.
  • 201. Ollivier-Bousquet M., Milk lipid and protein traffic in mammary epithelial cells: Joint and independent pathways. Repr. Nutr. Dev., 2002, 42, 149–162.
  • 202. Oshida K., Shimizu T., Takase M., Tamura Y., Shimizu T., Yamashiro Y., Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatric Res., 2003, 53, 589–593.
  • 203. Pallesen L.T., Andersen M.H., Nielsen R.L., Berglund L., Petersen T.E., Rasmussen L.K., Purification of MUC1 from bovine milk-fat globules and characterization of a corresponding full-length cDNA clone. J. Dairy Sci., 2001, 84, 2591–2598.
  • 204. Pardo C.A., Vargas D.L., Zimmerman A.W., Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psych., 2006, 17, 485–495.
  • 205. Parodi P.W., Cow’s milk components with anti-cancer potential. Aust. J. Dairy Tech., 2001, 56, 65–73.
  • 206. Patton S., Origin of the milk fat globule. J. Am. Oil Chem. Soc., 1973, 50, 178–185.
  • 207. Patton S., Release of remnant plasma membrane from milk fat globules by Triton X-100. Biochim. Biophys. Acta, 1982, 688, 727–734.
  • 208. Patton S., Huston G.E., A method for isolation of milk fat globules. Lipids, 1986, 21, 170–174.
  • 209. Patton S., Jensen R.G., Lipid metabolism and membrane functions of the mammary gland. 1975, in: Progress in the Chemistry of Fats and other Lipids (Vol. XIV) Part 4, (ed. R.T. Holman). Pergamon Press, Oxford, pp. 163–277.
  • 210. Patton S., Jensen R.G., Biomedical Aspects of Lactation. 1976, Pergamon Press, Oxford, p. 78.
  • 211. Patton S., Keenan T.W., The milkfat globule membrane. Biochim. Biophys. Acta, 1975, 415, 3, 273–309.
  • 212. Patton S., Kelley J.J., Keenan T.W., Carotene in bovine milk fat globules: Observations on origin and high content in tissue mitochondria. Lipids, 1980, 15, 1, 33–38.
  • 213. Patton S., Long C., Sokka T., Effect of storing milk on cholesterol and phospholipid of skim milk. J. Dairy Sci., 1980, 63, 697–700.
  • 214. Peixoto de Menezes A., Pinto da Silva P., Freeze-fractured observations of the lactating rat mammary gland. Membrane events during milk secretion. J. Cell Biol., 1978, 76, 767–778.
  • 215. Pepeu G., Pepeu I.M., Amaducci L., A review of phosphatidylserine pharmacological and clinical effects. Is phosphatidylserine a drug for the ageing brain?, Pharmacol. Res., 1996, 33, 73–80.
  • 216. Peterson J.A., Hamosh M., Scallan C.D., Ceriani R.L., Henderson T.R., Mehta N.R., Milk fat globule glycoproteins in human milk and in gastric aspirates of mother’s milk-fed preterm infants. Pediatric Res., 1998a, 44, 499–506.
  • 217. Peterson J.A., Patton S., Hamosh M., Glycoproteins of the human milk fat globule in protection of the breastfed infant against infection. Biol Neonate, 1998b, 143–162.
  • 218. Pfeuffer M., Schrezenmeir J., Dietary sphingolipids: Metabolism and potential health implications. Kieler Milchwirtschaftliche Forschungsberichte, 2001, 53, 31–42.
  • 219. Phipps L.W., Temple D.M., Surface properties of milk fat globules: Interfacial tension studies. J. Dairy Res., 1982, 49, 61–72.
  • 220. Politis I., Barbano D.M., Gorewit R.C., Distribution of plasminogen and plasmin in fractions of bovine milk. J. Dairy Sci., 1992, 75, 1402–1410.
  • 221. Rasmussen J.T., Berglund L., Pallesen L.T., Petersen T.E., Proteins from the milk fat globule membrane. Poster at the 26th IDF World Dairy Congress, September 24–27, 2002, Paris, France.
  • 222. Rasmussen J.T., Berglund L., Rasmussen M.S., Petersen T.E., Assignment of disulfide bridges in bovine CD36. Eur. J. Biochem., 1998, 257, 488–494.
  • 223. Reinhardt T.A., Lippolis J.D., Bovine milk fat globule membrane proteome. J. Dairy Res., 2006, 73, 406–416.
  • 224. Riccio P., The proteins of the milk fat globule membrane in the balance. Trends Food Sci. Tech., 2004, 15, 458–461.
  • 225. Roesch R.R., Rincon A., Corredig M., Emulsifying properties of fractions prepared from commercial buttermilk by microfiltration. J. Dairy Sci., 2004, 87, 4080–4087.
  • 226. Rombaut R., Dewettinck K., Properties, analysis and purification of milk polar lipids. Int. Dairy J., 2006, 16, 1362–1373.
  • 227. Rombaut R., Camp J.V., Dewettinck K., Analysis of phosphoand sphingolipids indairy products by a new HPLC method. J. Dairy Sci., 2005, 88, 482–488.
  • 228. Rombaut R., Dejonckheere V., Dewettinck K., Microfiltration of butter serum upon casein micelle destabilization. J. Dairy Sci., 2006, 89, 1915–1925.
  • 229. Rombaut R., Dejonckheere V., Dewettinck K., Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey. J. Dairy Sci., 2007, 90, 1662–1673.
  • 230. Rueda R., Maldonaldo J., Narbona E., Gil A., Neonatal dietary gangliosides. Early Humm Dev., 1998, 53, S135-S147.
  • 231. Sachdeva S., Buchheim W., Recovery of phospholipids from buttermilk using membrane processing. Kieler Milchwirtschaftliche Forschungsberichte, 1997, 49, 47–68.
  • 232. Salvatierra S., Stannard D.J., Parkinson R.D., The effect of two types of milking claws on foaming and fat globule damage in milk. New Zealand J. Dairy Sci. Tech., 1978, 13, 111–113.
  • 233. Sanchez-Juanes F., Alonso J.M., Zancada L., Hueso P., Glycosphingolipids from bovine milk and milk fat globule membranes: a comparative study. Adhesion to enterotoxigenic Escherichia coli strains. Biol. Chem., 2008, 390, 1, 31–40.
  • 234. Sanchez-Juanes F., Alonso J.M., Zancada L., Hueso P., Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. Int. Dairy J., 2009, 19, 273–278.
  • 235. Schmelz E.M., Dietary sphingomyelin and other sphingolipids in health and disease. Brit. Nutr. Found. Bull., 2000, 25, 135–139.
  • 236. Schmelz E.M., Merrill A.H., Tumor suppression in Min mice by dietary sphingolipids. Faseb J., 2000, 14, A170.
  • 237. Schmelz E.M., Crall K.J., Larocque R., Dillehay D.L., Merrill A.H., Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J. Nutr., 1994, 124, 702–712.
  • 238. Schmelz E.M., Dillehay D.L., Webb S.K., Reiter A., Adams J., Merrill A.H., Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1, 2-dimethylhydrazine: Implications for dietary sphingolipids and colon carcinogenesis. Cancer Res., 1996, 56, 4936–4941.
  • 239. Schmelz E.M., Sullards M.C., Dillehay D.L., Merrill A.H., Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1, 2-dimethylhydrazine-treated CF1 mice. J. Nutr., 2000, 130, 522–527.
  • 240. Schroten H., Hanisch F.G., Plogmann R., Hacker J., Uhlenbruck G., Nobis-Bosch R., Wahn, V., Inhibition of adhesion of S-fimbriated Eacherichia coli in buccal epithelial cells by human milk fat globule membrane components: a novel aspect of the protective function of mucins in the non-immunoglobulin fraction. Infect. Immun., 1992, 60, 2893–2899.
  • 241. Schroten H., Plogmann R., Hanisch F.G., Inhibition of adhesion of S-fimbriated E.coli to buccal epithelial cells by human skim milk is predominantly mediated by mucins and depends on the period of lactation. Acta Paediatr., 1993, 82, 6–11.
  • 242. Shahin Y., Hamzawi L.F., Haggag H.F., Fatty acid composition of fat globule membrane neutral lipids from Egyptian buffalo, goat and cow’s milk. Food Chem., 1987, 24, 1, 11–19.
  • 243. Sharma S.K., Dalgleish D.G., Effect of heat treatments on the incorporation of milk serum proteins into the fat globule mem- brane of homogenized milk. J. Dairy Res., 1993, 61, 375–384.
  • 244. Shimizu M., Yamauchi K., Kanno C., Proteolytic digestion of milk fat globule membrane proteins. Milchwissenschaft, 1979, 34, 11, 666–668.
  • 245. Shimizu M., Yamauchi K., Kanno C., Effect of proteolic of milk fat globule membrane proteins on stability of the globules. Milchwissenschaft, 1980, 35, 1, 9–12.
  • 246. Singh H., The milk fat globule membrane- a biophysical system for food applications. Current Opin. Coll.Interf. Sci., 2006, 11, 154–163.
  • 247. Singh S., Ganguli N.C., Compositional and electrophoretic changes in buffalo milk-fat globule membrane proteins during lactation. J. Dairy Res., 1976, 43, 3, 381–388.
  • 248. Sleigh R.W., Bain J.M., Burley R.W., study of cow’s milk containing high levels of linoleic acid: isolation and properties of the fat-globule membrane. J. Dairy Res., 1976, 43, 389–400.
  • 249. Smith L.M., Bianco D.H., Dunkley W.L., Composition of milk fat globules with increased linoleic acid. J. Am. Oil Chem. Soc., 1977, 54, 3, 132–137.
  • 250. Snow L.D., Colton D.G., Carraway K.L., Purification and properties of the major sialoglycoprotein of the milk fat globule membrane. Arch. Biochem. Biophys., 1977, 179, 290–697.
  • 251. Snow L.D., Doss R.C., Carraway K.L., Cooperativity of the concanavalin A inhibition of bovine milk fat globule membrane 5-nucleotidase – Response to extraction of nucleotidase and of putative cytoplasmic surface coat components. Biochim. Biophys. Acta, 1980, 611, 333–341.
  • 252. Sodini I., Morin P., Olabi A., Jimenez-Flores R., Compositional and functional properties of buttermilk: A comparison between sweet, sour, and whey buttermilk. J. Dairy Sci., 2006, 89, 525–536.
  • 253. Sorensen E.S., Petersen T.E., Purification and characterization of 3 proteins isolated from the proteose peptone fraction of bovine milk. J. Dairy Res., 1993a, 60, 189–197.
  • 254. Sorensen E.S., Petersen T.E., Phosphorylation, glycosylation and amino-acid sequence of component pp3 from the proteose peptone fraction of bovine milk. J. Dairy Res., 1993b, 60, 535–542.
  • 255. Sorensen E.S., Rasmussen L.K., Moller L., Petersen T.E., The localization and multimeric nature of component PP3 in bovine milk: Purification and characterization of PP3 from caprine and ovine milks. J. Dairy Sci., 1997, 80, 3176–3181.
  • 256. Spitsberg V.L., Bovine milk fat globule membrane as a potential nutraceutical. J. Dairy Sci., 2005, 88, 2289–2294.
  • 257. Spitsberg V.L., Gorewit R.C., Anti-cancer proteins Ffound in Milk. 1997, CALS News, Cornell University, Ithaca, NY, USA: Cornell University.
  • 258. Spitsberg V.L., Gorewit R.C., Solubilization and purification of xanthine oxidase from bovine milk fat globule membrane.Protein Expr. Purif., 1998, 13, 229–234.
  • 259. Spitsberg V.L., Gorewit R.C., Isolation, purification and characterization of fatty-acid-binding protein from milk fat globule membrane: Effect of bovine growth hormone treatment. Pakistan J. Nutr., 2002, 1, 43–48.
  • 260. Spitsberg V.L., Matitashvili E., Gorewit R.C., Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur. J. Biochem., 1995, 230, 872–878.
  • 261. Sprong R.C., Hulstein M.F.E., Van der Meer R., Bactericidal activities of milk lipids. Antimicrob. Agents Chemother., 2001, 45, 1298–1301.
  • 262. Sprong R.C., Hulstein M.F.E., Van der Meer R., Bovine milk fat components inhibit food-borne pathogens. Int. Dairy J., 2002, 12, 209–215.
  • 263. Stannard D.J., The use of marker enzymes to assay the churning of milk. J. Dairy Res., 1975, 42, 241–246.
  • 264. Stefferl A., Brehm U., Linington C., The myelin oligodendrocyte glycoprotein (MOG): A model for antibody-mediated demyelination in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Neural Transmission-Supplement, 2000a, 123–133.
  • 265. Stefferl A., Schubart A., Storch M., Amini A., Mather I., Lassmann H., Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J. Immunol., 2000b, 165, 2859–2865.
  • 266. Stigler K.A., Autism and the immune system: An overview. Neurotoxicology, 2006, 27, 881.
  • 267. Swope F.C., Brunner J.R., Characteristics of the fat globule membrane of cow’s milk. J. Dairy Sci., 1970, 53, 691–699.
  • 268. Symolon H., Schmelz E.M., Dillehay D.L., Merrill A.H., Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1, 2-dimethylhydrazine-treated CF1 mice and Apc(Min/+) mice. J. Nutr., 2004, 134, 1157–1161.
  • 269. Szuhaj B.F., Lecithin production and utilization. J. Am. Oil Chem. Soc., 1983, 60, 306–309.
  • 270. Szuhaj B.F., Nieuwenhuyzen W.V., Nutrition and Biochemistry of Phospholipids. 2003, AOCS Press, Illinois, pp. 80–87.
  • 271. Te Whaiti I.E., Fryer T.F., Factors that determine the gelling of cream. New Zeal. J. Dairy Sci. Tech., 1975, 10, 2–257.
  • 272. Tolle A., Heeschen W., Free fatty acids in milk in relation to flow conditions in milking plants. 1975, in: Proceedings of the lipolysis symposium. IDF Bulletin, 1975, No. 86, pp. 134–137, Brussels: International Dairy Federation.
  • 273. van Boekel M.A.J.S., Folkerts T., Effect of heat treatment on the stability of milk fat globules. Milchwissenschaft, 1991, 46, 758–765.
  • 274. van Boekel M.A.J.S., Walstra P., Effect of heat treatment on chemical and physical changes to milkfat globules. 1995, in: Heat-Induced Changes in Milk (ed. P.F. Fox). International Dairy Federation, Brussels, pp. 51–65.
  • 275. van Boekel M.A.J.S., Walstra P., Physical changes in the fat globules in unhomogenized and homogenized milk. In: IDF Bulletin, 1989, No. 238, pp. 13–16, Brussels: International Dairy Federation.
  • 276. van Hoo ijdonk A.C.M., Kussendrager K.D., Steijns J.M., In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. Brit. J. Nutr., 2000, 84, S127-S134.
  • 277. van Rensburg E.J., Joone C.K., O’sullivan J.F., Anderson R., Antimicrobial activities of clofazimine and B669 are mediated by lysophospholipids. Antimicrob. Agents Chemother., 1992, 36, 2729–2735.
  • 278. Vanhoutte B., Rombaut R., Dewettinck K., Van der Meeren P., Phospholipids. 2004, in: Food Analysis (ed. L.M.L. Nollet). Marcel Dekker, New York, USA, pp. 349–382.
  • 279. Vannieuwenhuyzen W., Lecithin production and properties. J. Am. Oil Chem. Soc., 1976, 53, 425–427.
  • 280. Vannieuwenhuyzen W., The industrial use of special lecithins, a review. J. Am. Oil Chem. Soc., 1981, 58, 886–888.
  • 281. Venable M.E., Lee J.Y., Smyth M.J., Bielawska A., Obeid L.M., Role of ceramide in cellular senescence. J. Biol. Chem., 1995, 270, 30701–30708.
  • 282. Vesper H., Schmelz E.M., Nikolova-Karakashian M.N., Dillehay D.L., Lynch D.V., Merrill A.H., Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr., 1999, 129, 1239–1250.
  • 283. Vissak C., Lemery D., Le Corre L., Fustier P., Dechelotte P., Maurizis J.C., Presence of BRCA1 and BRCA2 proteins in human fat globules after delivery. Biochim. Biophys. Acta, 2002, 1586, 50–56.
  • 284. Vojdani A., Campbell A.W., Anyanwu E., Kashanian A., Bock K., Vojdani E., Antibodies to neuron-specific antigens in children with autism: Possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J. Neuroimmunol., 2002, 129, 168–177.
  • 285. Walstra P., High melting triglycerides in fat globule membraneartifact. Neth. Milk Dairy J., 1974, 28, 3–9.
  • 286. Walstra P., Physical chemistry of milkfat globules. 1983, in: Developments in Dairy Chemistry (ed. P.F. Fox). Applied Science Publishers, New York, pp. 119–157.
  • 287. Walstra P., Physical chemistry of milkfat globules. 1995, in: Developments in Dairy Chemistry (ed. P.F. Fox). Chapman & Hall, London, pp. 131–173.
  • 288. Walstra P., Jenness R., Dairy Chemistry and Physics. 1984, Wiley, New York, pp. 279–289.
  • 289. Walstra P., Oortwijn H., The membranes of recombined fat globules. 3. Mode of formation. Neth. Milk Dairy J., 1982, 36, 103.
  • 290. Walstra P., Some comments on the isolation of fat globule membrane material. J. Dairy Res., 1985, 52, 309–312.
  • 291. Walstra, P., Geurts, T.J., Noomen, A., Jellema, A., van Boekel, M.A.J.S., Dairy Technology. 1999, in: Principles of Milk Properties and Processes. Marcel Dekker, New York, USA, pp. 107–147.
  • 292. Walstra P., Wouters J.T.M., Geurts T.J., Dairy Science and Technology, 2006, CRC Press, Boca Raton, FL, USA, pp. 497–512.
  • 293. Wang X., Hirmo S., Willen R., Wadstrom T., Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BALB/cA mouse model. J. Medical Microbiology, 2001, 50, 430–435.
  • 294. Whanger P.D., Selenium and the relationship to cancer: An update. Brit. J. Nutr., 2004, 91, 11–28.
  • 295. Wong P.Y.Y., Kitts D.D., A comparison of the buttermilk solids functional properties to nonfat dried milk, soy protein isolate, dried egg white, and egg yolk powders. J. Dairy Sci., 2003, 86, 746–754.
  • 296. Wooding F.B.P., The mechanism of secretion of the milk fat globule. J. Cell Sci., 1971a, 9, 805–821.
  • 297. Wooding F.B.P. The structure of the milk fat globule membrane. J. Ultrastructure Res., 1971b, 37, 388–400.
  • 298. Wooding F.B.P., Kemp P., High melting point triglycerides and milk fat globule membrane. J. Dairy Res., 1975, 49, 419–426.
  • 299. Yamauchi K., Shimizu M., Kanno C., Effect of preparation on properties of a soluble glycoprotein fraction of milk fat globule membrane. J. Dairy Sci., 1978, 61, 6, 688–696.
  • 300. Yang J., Yu Y.N., Sun S.Y., Duerksen-Hughes P.J., Ceramide and other sphingolipids in cellular responses. Cell Biochem. Biophys., 2004, 40, 323–350.
  • 301. Ye A., Singh H., Taylor M.W., Anema S., Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J., 2002, 12, 4, 393–402.
  • 302. Ye A., Singh H., Taylor M.W., Anema S., Interactions of whey proteins with milk fat globule membrane proteins during heat treatment of whole milk. Lait 2004, 84, 269–283.
  • 303. Yechiel E., Barenholz Y., Cultured heart cell reaggregates: A model for studying relationships between aging and liquid composition. Biochim. Biophys. Acta, 1986, 859, 105–109.
  • 304. Zaczek M., Keenan T.W., Morphological evidence for an endoplasmic reticulum origin of milk lipid globules obtained using lipid-selective staining procedures. Protoplasma, 1990, 159, 179–182.
  • 305. Zamora A., Guamis B., Trujillo A.J., Protein composition of caprine milk fat globule membrane. Small Ruminant Res., 2009, 82, 122–129.
  • 306. Zhang H., Buckley N.E., Gibson K., Spiegel S., Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J. Biol. Chem., 1990, 265, 76–81.
  • 307. Zhang H., Desai N.N., Olivera A., Seki T., Brooker G., Spiegel S., Sphingosine-1-phosphate: A novel lipid, involved in cellular proliferation. J. Cell Biol., 1991, 114, 155–167.
  • 308. Zhang L., Hellgren L.I., Xu X.B., Enzymatic production of ceramide from sphingomyelin. J. Biotechnol., 2006, 123, 93–105.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.