PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

Advanced decomposition of coking wastewater in relation to total organic carbon using an electrochemical system

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This research included experiments on the advanced treatment of coking wastewater by electrochemical reactor. The results showed that a favorable operating condition could be obtained through the electrochemical course, when electrolysis time was 60 min, current density was 8 A, and electrode span was 1 cm. Under this condition, total organic carbon (TOC) removal efficiency could reach 73%, and the removal mechanism had also been analyzed. In addition, the electrodes’ morphology characteristics and components were analyzed through a scanning electron microscope, and the results showed that on the surface of anode and cathode electrodes there were quite a few cracks, the amount of which increased after use. Meanwhile, the content of chemical elements on the electrodes’ surface changed obviously after use – especially Ti content (from 39.66% to 92.69%) on the anode and Fe content (from 72.57% to 53.66%) on the cathode. The result was probably caused by the redox reaction, namely the shedding of the coating on the anode electrode’s surface, and reactions around the cathode electrode’s surface.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

P.941-947,fig.,ref.

Twórcy

autor
  • College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063009, P.R. China
autor
  • College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063009, P.R. China
autor
  • College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063009, P.R. China
autor
  • College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063009, P.R. China
autor
  • College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063009, P.R. China
  • Drainage Engineering Technology Research Center of Tangshan City, Tangshan, 063009, P.R. China

Bibliografia

  • 1. OZYONAR F., KARAGOZOGLU B. Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes [J]. Pol. J. Environ. Stud. 20 (1), 173, 2011.
  • 2. Hai T., Sha J.P., Liu G.Z., Ou Y.L. Advanced treatment of biologically pretreated coking wastewater by electrocoagulation degradation behavior and mechanism. Pol. J. Environ. Stud. 24 (3), 1355, 2015.
  • 3. ULUCAN K., KURT U. Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: A kinetic approach. J. Electroanal. Chem. 747, 104, 2015.
  • 4. Duan F., Li Y., Cao H., Wang Y., Crittenden J.C., Zhang Y. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment. Chemosphere. 125, 205, 2015.
  • 5. Wang H., Chen L., You Z.G., Yang Y., Zhang L. Removal of residual organics in coking waste-water under different electrolytic conditions using three-dimensional system. Fresen. Environ. Bull. 22 (2), 395, 2013.
  • 6. SHEN Z.M., WU D., YANG J. Methods to improve electrochemical treatment effect of dye wastewater. J. Hazard. Mater. 131 (1), 90, 2006.
  • 7. ARELLANO C.A.P., MARTINEZ S.S. Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode. Int. J. Hydrogen. Energ. 32, 3163, 2007.
  • 8. CUI Y.P., YANG C.Z., QIAN G.M. Remediation of phenolcontaminated sediment by non-uniform electrochemical oxidation reactor. Fresen. Environ. Bull. 15 (11), 1413, 2006.
  • 9. WU G.M., YUAN S.H., AI Z.H. Degradation of various chlorophenols by electrochemical, electro-fenton, microwave assisted photolytic and microwave assisted photocatalytic methods. Fresen. Environ. Bull. 14 (8), 703, 2005.
  • 10. DAGHRIR R., DROGUI P., TSHIBANGU J. Efficient treatment of domestic wastewater by electrochemical oxidation process using bored doped diamond anode. Sep. Purif. Technol. 131, 79, 2014.
  • 11. WANG J.L., QUAN X.C., WU L.B., WERNER H. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochem. 38, 777, 2002.
  • 12. ZHU X., NI J., LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Res. 43 (17), 4347, 2009.
  • 13. LAI P., ZHAO H.Z., WANG C., NI J.R. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes. J. Hazard. Mater. 147 (1), 232, 2007.
  • 14. LAI P., ZHAO H. Z., ZENG M., NI J.R. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process. J. Hazard. Mater. 162 (2), 1423, 2009.
  • 15. LIM B.R., HU H.Y., HUANG X., FUJIE K. Effect of seawater on treatment performance and microbial population in a biofilter treating coke-oven wastewater, Process Biochem. 37, 943, 2003.
  • 16. WANG Z.P., HUANG L.Z., SU J. W., LI J., LIU G.H., ZHANG Z. Removal of cyanides in coking wastewater by ferrate pre-oxidization followed by photochemical process. Fresen. Environ. Bull. 17 (8), 1082, 2008.
  • 17. MA Q., QU Y.Y., SHEN W.L., ZHANG Z.J., WANG J.W., LIU Z.Y., LI D.X., Li H.J., Zhou J.T. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour. Technol. 179, 436, 2015.
  • 18. LIU Y., XIE J., ONG C.N., VECITIS C.D., ZHOU Z. Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H₂O₂. Environ. Sci.: Water Res. Technol. 1 (6), 769, 2015.
  • 19. TU X., XIAO S., SONG Y., ZHANG D., ZENG P. Treatment of simulated berberine wastewater by electrochemical process with Pt/Ti anode. Environ. Earth Sci. 73 (9), 4957, 2015.
  • 20. VO K.A., XU X.J., LI T.G., Peng R.H., Liu S.L., Yue X.L. Research on a new electrochemical method combined with chemical coagulation in removal of lead, zinc, and copper from wastewater. Desalin. Water Treat. 57 (33), 15343, 2016.
  • 21. Misra R., Guldhe A., Singh P., Rawat I., Stenström T.A., Bux F. Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes. Bioresour. Technol. 176, 1, 2015.
  • 22. Sangeetha V., Sivakumar V., Sudha A., Kannan K. Electrochemical degradation of sago wastewater using Ti/PbO₂ electrode: optimisation using response surface methodology. Int. J. Electrochem. Sci. 10 (2), 1506, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5bb36d6c-4c18-455e-8ffc-7a87f234a09a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.