PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 60 | 4 |

Tytuł artykułu

Taphonomy of the fossil insects of the middle Eocene Kishenehn Formation

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The lacustrine oil shales of the Coal Creek Member of the Kishenehn Formation in northwestern Montana comprise a relatively unstudied middle Eocene fossil insect locality. Herein, we detail the stratigraphic position of the fossiliferous unit, describe the insect fauna of the Coal Creek locality and document its bias towards very small but remarkably preserved insects. In addition, the depositional environment is examined and the mineral constituents of the laminations that comprise the varves of the Kishenehn oil shale are defined. Fifteen orders of insects have been recorded with the majority of all insects identified as aquatic with the families Chironomidae (Diptera) and Corixidae (Hemiptera) dominant. The presence of small aquatic insects, many of which are immature, the intact nature of >90% of the fossil insects and the presence of Daphnia ephippia, all indicate that the depositional environment was the shallow margin of a large freshwater lake. The fossil insects occur within fossilized microbial mat layers that comprise the bedding planes of the oil shale. Unlike the fossiliferous shales of the Florissant and Okanagan Highlands, the mats are not a product of diatomaceous algae nor are diatom frustules a component of the sediments or the varve structure. Instead, the varves are composed of very fine eolian siliciclastic silt grains overlaid with non-diatomaceous, possibly cyanobacteria-derived microbial mats which contain distinct traces of polyaromatic hydrocarbons. A distinct third layer composed of essentially pure calcite is present in the shale of some exposures and is presumably derived from the seasonal warming-induced precipitation of carbonate from the lake's waters. The Coal Creek locality presents a unique opportunity to study both very small middle Eocene insects not often preserved as compression fossils in most Konservat-Lagerstätte and the processes that led to their preservation.

Wydawca

-

Rocznik

Tom

60

Numer

4

Opis fizyczny

p.931-947,fig.,ref.

Twórcy

  • Department of Paleobiology, NMNH, Smithsonian Institution, P.O. Box 37012 MRC 121, Washington, D.C. 20013-7012, USA
autor
  • Department of Mineral Sciences, NMNH, Smithsonian Institution, P.O. Box 37012 MRC 119, Washington, D.C. 20013-7012, USA
  • Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Box 857, 501 11 Boras, Sweden
  • Department of Mineral Sciences, NMNH, Smithsonian Institution, P.O. Box 37012 MRC 119, Washington, D.C. 20013-7012, USA
autor
  • Department of Mineral Sciences, NMNH, Smithsonian Institution, P.O. Box 37012 MRC 119, Washington, D.C. 20013-7012, USA
  • Section of Vertebrate Fossils, Carnegie Museum of Natural History, Tucson, AZ 85704, USA
  • Department of Paleobiology, NMNH, Smithsonian Institution, P.O. Box 37012 MRC 121, Washington, D.C. 20013-7012, USA

Bibliografia

  • Allison, P.A., Maeda, H., Tuzino, T., and Maeda, Y. 2008. Exceptional preservation within Pleistocene lacustrine sediments of Shiobara, Japan. Palaios 23: 260-266.
  • Anderson, R.Y. and Dean, W.E. 1988. Lacustrine varve structure through time. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 215235.
  • Archibald, S.B. and Makarkin, V.N. 2006. Tertiary giant lacewings (Neu-roptera: Polystoechotidae): Revision and description of new taxa from western north America and Denmark. Journal of Systematic Palaeontology 4: 119-155.
  • Archibald, S.B., Bossert, W.H., Greenwood, D.R., and Farrell, B.D. 2010. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology 36: 374-398.
  • Archibald, S.B., Greenwood, D.R., and Mathewes, R.W. 2013. Seasonality, montane beta diversity, and Eocene insects: Testing Janzen's dispersal hypothesis in an equable world. Palaeogeography, Palaeoclimatology, Palaeoecology 371: 1-8.
  • Benzie, J.A.H. 2005. The Genus Daphnia (including Daphniopsis) (Ano-mopoda: Daphniidae). 376 pp. Backhuys Publishers, Leiden.
  • Bradley, W.H. 1930. The varves and climate of the Green River Epoch. U.S. Geological Survey Professional Paper 158: 87-110.
  • Carroll, A.R. and Bohacs, K.M. 2001. Lake-type controls on petroleum source rock potential in nonmarine basins. American Association of Petroleum Geologists Bulletin 85: 1033-1054.
  • Castenholz, R.W. 1969. The thermophilic cyanophytes of Iceland and their upper temperature limit. Journal of Phycology 5: 360-368.
  • Clapham, M.E. 2013. Taxonomic occurrences recorded in the Paleobiology Database. Fossilworks. http://fossilworks.org (accessed 5 November 2013).
  • Colbourne, J.K., Hebert, P.D.N., and Taylor, D.J. 1997. Evolutionary origins of phenotypic diversity in Daphnia. In: T.J. Givnish and K.J. Sytsma (eds.), Molecular Evolution and Adaptive Radiation, 163-188. Cambridge University Press, Cambridge.
  • Constenius, K.N. 1981. Stratigraphy, Sedimentation, and Tectonic History of the Kishenehn Basin, Northwestern Montana. 116 pp. Unpublished M.Sc. Thesis, University of Wyoming, Laramie.
  • Constenius, K.N. 1996. Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. Geological Society of America Bulletin 108: 20-39.
  • Constenius, K.N., Dawson, M.R., Pierce, H.G., Walter, R.C., and Wilson, M.V.H. 1989. Reconnaissance paleontologic study of the Kishenehn Formation, northwestern Montana and southeastern British Columbia. In: D.E. French and R.F. Grabb (eds.), 1989 Field Conference Guidebook: Montana Centennial Edition, Vol. 1, 189-203. Geological Resources of Montana, Billings.
  • Curiale, J.A. 1987. Steroidal hydrocarbons of the Kishenehn Formation, northwestern Montana. Organic Geochemistry 11: 233-244.
  • Curiale, J.A. 1988. Molecular genetic markers and maturity indices in intermontane lacustrine facies: Kishenehn Formation, Montana. Organic Geochemistry 13: 633-638.
  • Curiale, J.A., Sperry, S.W., and Senftle, J.T. 1988. Regional source rock potential of Oligocene Kishenehn Formation, northwestern Montana. American Association of Petroleum Geologists Bulletin 72: 1437-1449.
  • Daley, B. 1972. Some problems concerning the early Tertiary climate of southern England. Palaeogeography, Palaeoclimatology, Palaeoeco-logy 11: 177-190.
  • Daley, B. 1973. The palaeoenvironment of the Bembridge Marls (Oligo-cene) of the Isle of Wight, Hampshire. Proceedings of the Geologists' Association 84: 83-93.
  • Demaison, G.J., and Moore, G.T. 1980. Anoxic environments and oil source bed genesis. Organic Geochemistry 2: 9-31.
  • Dickman, M. 1985. Seasonal succession and microlaminae formation in a meromictic lake displaying varved sediments. Sedimentology 32: 109-118.
  • Dittrich, M. and Obst, M. 2004. Are picoplankton responsible for calcite precipitation in lakes? Ambio 33: 559-564.
  • Dudas, F.O., Isolatov, V.O., Harlan, S.S., and Snee, L.W. 2010. 40Ar/39Ar geochronology and geochemical reconnaissance of the Eocene Lowland Creek volcanic field, west-central Montana. Journal of Geology 118: 295-304.
  • Dunn, K.A., McLean, R.J.C., Upchurch, G.R., Jr., and Folk, R.L. 1997. Enhancement of leaf fossilization potential by bacterial biofilms. Geology 25: 1119-1122.
  • Fourcans, A., de Oteyza, T.G., Wieland, A., Solé, A., Diestra, E., van Bleij-swijk, J., Grimalt, J. O., Kühl, M., Esteve, I., Muyzer, G., Caumette, P., and Duran, R. 2004. Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). Federation of European Microbiological Societies, Microbiology Ecology 51: 55-70.
  • Frank, P.W. 1988. Conchostraca. Palaeogeography, Palaeoclimatolgy and Palaeoecology 62: 399-403.
  • Gall, J.-C. 1990. Les voiles microbiens, Leur contribution á la fossilisation des organismes de corp mou. Lethaia 23: 21-28.
  • Gall, J.-C. 2001. Role of microbial mats. In: D.E.G. Briggs and P.R. Crowther (eds.), Palaeobiology 2, 280-284. Blackwell Scientific, Oxford.
  • Gerdes, G., Krumbein, W.E., and Reineck, H.-E. 1991. Biolaminations— ecological versus depositional dynamics. In: G. Einsele, W. Ricken, and A. Seilacher (eds.), Cycles and Events in Stratigraphy, 592-607. Springer-Verlag, Heidelberg.
  • Gierlowski-Kordesch, E.H. and Park, L.E. 2004. Comparing species diversity in the modern and fossil record of lakes. Journal of Geology 112: 703-717.
  • Glass, K., Ito, S., Wilby, P.R., Sota, T., Nakamura, A., Bowers, C.R., Miller, K.E., Dutta, S., Summons, R.E., Briggs, D.E.G., Wakamatsu, K., and Simon, J.D. 2013. Impact of diagenesis and maturation on the survival of eumelanin in the fossil record. Organic Geochemistry 64: 29-37.
  • Greenwalt, D. and Labandeira, C. 2013. The Amazing Fossil Insects of the Eocene Kishenehn Formation in NW Montana. Rocks and Minerals 88: 434-441.
  • Greenwalt, D. and Rust, J. 2014. A new species of Pseudotettigonia Zeuner 1937 (Orthoptera: Tettigoniidae) with an intact stridulatory field and a revision of the subfamily Pseudotettigoniinae. Systematic Entomology 39: 256-263.
  • Greenwalt, D.E., Goreva, Y., Siljeström, S., Rose, T., and Harbach, R.E. 2013. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proceedings of the National Academy of Sciences 110: 18496-18500.
  • Gregory, K.M. and Mcintosh, W.C. 1996. Paleoclimate and paleoelevation of the Oligocene Pitch-Pinnacle flora, Sawatch Range, Colorado. Geological Society of America Bulletin 108: 545-561.
  • Grimaldi, D. and Engel, M.S. 2005. Evolution of the Insects. 755 pp. Cambridge University Press, New York.
  • Grimaldi, D.A., Engel, M.S., and Nascimbene, P.C. 2002. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates 3361: 1-71.
  • Grimaldi, D.A., Shedrinsky, A., and Wampler, T.P. 2000. A remarkable deposit of fossiliferous amber from the Upper Cretaceous (Turonian) of New Jersey. In: D. Grimaldi (ed.), Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey, 1-76. Backhuys, Leiden.
  • Groves, C. and Shekelle, M. 2010. The genera and species of Tarsiidae. International Journal of Primatology 31: 1071-1082.
  • Harbach, R.E. and Greenwalt, D.E. 2012. Two Eocene species of Culiseta (Diptera: Culicidae) from the Kishenehn Formation in Montana. Zootaxa 3530: 25-34.
  • Harding, I.C. and Chant, L.S. 2000. Self-sedimented diatom mats as agents of exceptional fossil preservation in the Oligocene Florissant lake beds, Colorado, United States. Geology 28: 195-198.
  • Huber, M. and Caballero, R. 2011. The early Eocene equable climate problem revisited. Climate of the Past Discussions 7: 603-633.
  • Huber, J.T. and Greenwalt, D.E. 2011. Compression fossil Mymaridae (Hy-menoptera) from Kishenehn oil shales, with description of two new genera and review of Tertiary amber genera. ZooKeys 130: 473-494.
  • Huggert, L. 1979. Cryptoserphus and Belytinae wasps (Hymenoptera, Pro-ctotrupoidea) parasitizing fungus- and soil-inhabiting Diptera. Notulae Entomologicae 59: 139-144.
  • Iniesto, M., Lopez-Archilla, A.I., Fregenal-Martínez, M., Buscalioni, A.D., and Guerrero, M.C. 2013. Involvement of microbial mats in delayed decay: an experimental essay on fish preservation. Palaios 28: 56-66.
  • Ivarsson, M., Broman, C., Sturkell, E., Ormö, J., Siljeström, S., van Zuilen, M., and Bengtson, S. 2013. Fungal colonization of an Ordovician impact-induced hydrothermal system. Scientific Reports 3: 3487-3492.
  • Janecke, S.U. and Snee, L.W. 1993. Timing and episodicity of middle Eocene volcanism and onset of conglomerate deposition, Idaho. Journal of Geology 101: 603-621.
  • Katz, A. and Nishri, A. 2013. Calcium, magnesium and strontium cycling in stratified, hardwater lakes: Lake Kinneret (Sea of Galilee), Israel. Geochimica et Cosmochimica Acta 105: 372-394.
  • Kleiven, O.T., Larsson, P., and Hobaek, A. 1992. Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65: 197-206.
  • Kühl, M. and Fenchel, T. 2000. Bio-optical characteristics and the vertical distribution of photosynthetic pigments and photosynthesis in an artificial cyanobacterial mat. Microbial Ecology 40: 94-103.
  • Liutkus, C.M., Beard, J.S., Fraser, N.C., and Ragland, P.C. 2010. Use of fine-scale stratigraphy and chemostratigraphy to evaluate conditions of deposition and preservation of a Triassic Lagerstatte, south-central Virginia. Journal of Paleolimnology 44: 645-666.
  • Lutz, H. 1988. Riesenameisen und andere Raritaten-die Insektenfauna. In: S. Schaal and W. Ziegler (eds.), Messel-Ein Schaufenster in die Geschichte der Erde und des Lebens, 55-67. Verlag Waldemar Kramer, Frankfurt.
  • Lutz, H. 1997. Taphozönosen terrestrischer Insekten in aquatischen Sedi-menten—ein Beitrag zur Rekonstruktion des Paläoenvironments. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 203: 173-210.
  • Martinez-Delclös, X. and Martinell, J. 1993. Insect taphonomy experiments: their application to the Cretaceous outcrops of lithographic limestones from Spain. Kaupia 2: 133-144.
  • Martinez-Delclös, X., Briggs, D.E.G, and Peňalver, E. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatol-ogy, Palaeoecology 203: 19-64.
  • McKenna, M.C. 1990. Plagiomenids (Mammalia: ?Dermoptera) from the
  • Oligocene of Oregon, Montana and South Dakota, and Middle Eocene of northwestern Wyoming. In: T.M. Brown and K.D. Rose (eds.), Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America. Geological Society of America, Special Paper 243: 211-234.
  • McKirdy, D.M., Cox, R.E., Volkman, J.K., and Howell, V.J. 1986. Botryo-coccane in a new class of Australian non-marine crude oils. Nature 320: 57-59.
  • McLeroy, C.A. and Anderson, R.Y. 1966. Laminations of the Oligocene Florissant lake deposits, Colorado. Geological Society of America Bulletin 77: 605-618.
  • McNamara M.E., Briggs, D.E.G., and Orr, P.J. 2012. The controls on the preservation of structural color in fossil insects. Palaios 27: 443-454.
  • Meyer, H.W. 2003. The Fossils of the Florissant. 258 pp. Smithsonian Books, Washington, D.C.
  • Mitchell, A.A. 2013. EDNA, The Fossil Insect Database. http//edna.palass-hosting.org (accessed 5 November 2013).
  • Moldowan, J.M., Seifert, W.K., and Gallegos, E.J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin 69: 1255-1268.
  • Ni, X., Meng, J., Beard, K.C., Gebo, D.L., Wang, Y., and Li, C. 2010. A new tarkadectine primate from the Eocene of Inner Mongolia, China: phylo-genetic and biogeographic implications. Proceedings of the Royal Society of London, Series B, Biological Sciences 277: 247-256.
  • O'Brien, N.R., Meyer, H.W., and Harding, I.C. 2008. The role of biofilms in fossil preservation, Florissant Formation, Colorado. In: H.W. Meyer and D.M. Smith (eds.), Paleontology of the Upper Eocene Florissant Formation, Colorado. Geological Society of America Special Paper 435: 19-31.
  • O'Brien, N.R., Meyer, H.W., Reilly, K., Ross, A.M., and Maguire, S. 2002. Microbial taphonomic processes in the fossilization of insects and plants in the late Eocene Florissant Formation, Colorado. Rocky Mountain Geology 37: 1-11.
  • Obst, M., Wehrli, B., and Dittrich, M. 2009. CaCO3 nucleation by cyano-bacteria: laboratory evidence for a passive, surface-induced mechanism. Geobiology 7: 324-347.
  • Peňalver, E. 2002. Los insectos dípteros delMioceno del Este de la Peninsula Ibérica; Rubielos de Mora, Ribesalbes y Bicorp. Tafonomía y sistemática. 550 pp. Ph.D. Thesis, Universitat de Valencia, Valencia.
  • Peňalver, E. and Engel, M. 2006. Two wasp families rare in the fossil record (Hymenoptera): Perilampidae and Megaspilidae from the Miocene of Spain. American Museum Novitates 3540: 1-12.
  • Peňalver, E. and Gaudant, J. 2010. Limnic food web and salinity of the Upper Miocene Bicorb palaeolake (eastern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 297: 683-696.
  • Peňalver, E., Martinez-Delclös, X., and De Renzi, M. 2002. Evidence of continental microbial mats based on the study of fossil insects—examples from two Spanish Konservat Fossil-Lagerstätten. In: M. De Renzi, M. Pardo, M. Belinchón, E. Peňalver, P. Montoya, and A. Márquez-Aliaga (eds.), Current Topics on Taphonomy and Fossilization, 281-287. Ayun-tamiento de Valencia, Valencia.
  • Penney, D. 2010. Biodiversity of Fossils in Amber from the Major World Deposits. 305 pp. Siri Scientific Press, Manchester.
  • Peters, K., Walters, C., and Moldowan, M. 2005. The Biomarker Guide. 2nd ed. 471 pp. Cambridge University Press, Cambridge.
  • Petrulevicius, J.F. 2005. A plant hopper (Nogodinidae) from the Upper Pa-laeocene of Argentina: systematics and taphonomy. Palaeontology 48: 299-308.
  • Pierce, H.G. and Constenius, K.N. 2001. Late Eocene-Oligocene nonmarine mollusks of the northern Kishenehn Basin, Montana and British Columbia. Annals of the Carnegie Museum 70: 1-112.
  • Pierce, H.G. and Constenius, K.N. 2014. Terrestrial and aquatic mollusks of the Eocene Kishenehn Formation, Middle Fork Flathead River, Montana. Annals of the Carnegie Museum 82: 305-329.
  • Poinar, G., Jr., Archibald, B., and Brown, A. 1999. New amber deposit pro- vides evidence of early Paleogene extinctions, paeloclimates and past distributions. The Canadian Entomologist 131: 171-177.
  • Richter, G. and Wedmann, S. 2005. Ecology of the Eocene Lake Messel revealed by analysis of small fish coprolites and sediments from a drilling core. Palaeogeography, Palaeoclimatology, Palaeoecology 223: 147-161.
  • Robinson, N., Eglinton, G., Brassell, S.C., and Cranwell, P.A. 1984. Dino-flagellate origin for sedimentary 4a-methylsteroids and 5a (H)-stanols. Nature 308: 439-442.
  • Rust, J. 2000. Fossil record of mass moth migration. Nature 405: 530-531.
  • Schulz, R., Harms, F.-J., and Felder, M. 2002. Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Zeitschrift für Angewandte Geologie 4: 9-17.
  • Scudder, S.H. 1890a. The fossil insect localities in the Rocky Mountain region. Psyche 5: 363.
  • Scudder, S.H. 1890b. The Tertiary Insects of North America. United States Geological Survey of the Territories. 734 pp. United States Geological Survey, Washington, D.C.
  • Seilacher, A., Reif, W.-E., Westphal, F., Riding, R., Clarkson, E.N.K., and Whittington, H.B. 1985. Sedimentological, ecological and temporal patterns of Fossil Lagerstätten. Philosophical Transactions of the Royal Society of London B 311: 5-24.
  • Shockley, F.W. and Greenwalt, D.E. 2013. Ptenidium kishenehnsis, a new fossil described from the Kishenehn oil shales (Coleoptera: Ptiliidae), with a checklist of previously known fossil ptiliids. Proceedings of the Entomological Society ofWashington 115: 173-181.
  • Siljeström, S., Hode, T., Lausmaa, J., Sjövall, P., Toporski, J., and Thiel, V. 2009. Detection of organic biomarkers in crude oils using ToF-SIMS. Organic Geochemistry 40: 135-143.
  • Siljeström, S., Volk, H., George, S.C., Lausmaa, J., Sjövall, P., Dutkiewicz, A., and Hode, T. 2013. Analysis of single oil-bearing fluid inclusions in mid-Proterozoic sandstones (Roper Group, Australia). Geochimica et CosmochimicaActa 122: 448-463.
  • Smith, D. 2000. Beetle taphonomy in a recent ephemeral lake, southeastern Arizona. Palaios 15: 152-160.
  • Smith, D. 2006. How physical characteristics of beetles affect their fossil preservation. Palaios 21: 305-310.
  • Smith, D. 2012. Exceptional preservation of insects in lacustrine environments. Palaios 27: 346-353.
  • Smith, D. and Moe-Hoffman, A.P. 2007. Taphonomy of Diptera in lacustrine environments: a case study from Florissant fossil beds, Colrado. Palaios 22: 623-629.
  • Stephan, T., Jessberger, E.K., Heiss, C.H., and Rost, D. 2003. TOF-SIMS analysis of polycyclic aromatic hydrocarbons in Allan Hills 84001. Meteoritics andPlanetary Science 38: 109-116.
  • Stonedahl, G.M. and Lattin, J.D. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Oregon State University Agricultural Experiment Station Technical Bulletin 150: 1-83.
  • Stross, R.G. and Hill, J.C. 1965. Diapause induction in Daphnia requires two stimuli. Science 150: 1463-1464.
  • Thoene Henning, J., Smith, D.M., Nufio, C.R., and Meyer, H.W. 2012. Depositional setting and fossil insect preservation: A study of the late Eocene Florissant Formation, Colorado. Palaios 27: 481-488.
  • Tsujino, T. and Maeda, H. 1999. Stratigraphic and taphonomic features of diatomaceous shale of the Pleistocene Shiobara Group in Tochigi, Japan. Bulletin of the National Science Museum, Tokyo, Series C 25: 73-104.
  • Wagner, T., Neinhuis, C., and Barthlott, W. 1996. Wettability and contam-inability of insect wings as a function of their surface sculptures. Acta Zoologica 77: 213-225.
  • Wang, B., Zhang, H., Jarzembowski, A.E., Fang, Y., and Zheng, D. 2013. Taphonomic variability of fossil insects: A biostratinomic study of Pa-laeontinidae and Tettigarctidae (Insecta: Hemiptera) from the Jurassic Daohugou Lagerstätte. Palaios 28: 233-242.
  • Wappler, T. 2003. Systematik, Phylogenie, Taphonomie und Paläoökologie der Insekten aus dem Mittle-Eozän des Eckfelder Maares Vulkaneifel. Clausthaler Geowissenschaften 2: 1-241.
  • Wilby, P.R., Briggs, D.E.G., Bernier, P., and Gaillard, C. 1996. Role of microbial mats in the fossilization of soft tissues. Geology 24: 787-790.
  • Wilson, M.V.H. 1977. Paleoecology of Eocene lacustrine varves at Horsefly, British Columbia. Canadian Journal of Earth Sciences 14: 953-962.
  • Wilson, M.V.H. 1978. Paleogene insect faunas of western North America. Quaestiones Entomologicae 14: 13-34.
  • Wilson, M.V.H. 1980. Eocene lake environments: depth and distance from shore variation in fish, insect and plant assemblages. Palaeogeogra-phy, Palaeoclimatolgy, Palaeoecology 32: 21-44.
  • Wilson, M.V.H. 1982. Early Cenozoic insects: paleoenvironmental biases and evolution of the North American insect fauna. Proceedings of the Third North American Paleontological Convention 2: 585-588.
  • Wilson, M.V.H. 1988. Reconstruction of ancient lake environments using both autochthonous and allochthonous fossils. Palaeogeography, Palaeoclimatolgy, Palaeoecology 62: 609-623.
  • Wilson, M.V.H. 1996. Insects near Eocene lakes of the interior. In: R. Lud-vigsen (ed.), Life in Stone, a Natural History of British Columbia's Fossils, 225-233. The University of British Columbia Press, Vancouver.
  • Wolfe, J.A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences 23: 119-142.
  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686-693.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5b740047-11c4-4577-8d76-f72c3a20155e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.