PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |

Tytuł artykułu

Reproductive allocation strategy of two herbaceous invasive plants across different cover classes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Plant invasion succeeds because of such invader characteristics as fecundity and high-efficiency multiple reproduction modes. The acquisition of individual resources and the benefits of individual fitness are driven by optimum patterns of life history and trade-offs of reproductive allocation (RA) in plants, and variations in RA strategy play an key role in plant adaptation to environmental changes. Thus determining the RA strategy of invasive plants is important for understanding the successful mechanism underlying plant invasion. This study aims to determine the reproductive allocation (RA) strategy of two herbaceous invasive plants (Conyza canadensis and Solidago canadensis) across different cover classes in eastern China. Plant height, maximum branch length, the reproductive branch number, aboveground biomass, the amount of reproductive investment, and the coefficient of RA of the two plants decreased with increasing cover class (although the changes were not pronounced). Thus the two plants may decrease physiological investment on reproductive behavior and reduce RA under competitive conditions because of interspecies competition that progressively decreased and intraspecific competition that gradually increased with increasing cover class. The RA of the two plants may be principally influenced by plant community composition at low cover classes, but by soil pH at high cover classes. This may be the outcome that soil pH of the two plants decreased with increasing cover class significantly. Thus, intraspecific competition for resources may play an important role in the RA strategy of the two plants under high cover class.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.355-364,fig.,ref.

Twórcy

autor
  • Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P. R. China
autor
  • Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
autor
  • Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
autor
  • Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
autor
  • Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

Bibliografia

  • 1. POWELL K.I., CHASE J.M., KNIGHT T.M. Invasive plants have scale-dependent effects on diversity by altering speciesarea relationships. Science. 339, 316, 2013.
  • 2. SI C.C., LIU X.Y., WANG C.Y., WANG L., DAI Z.C., QI S.S., DU D.L. Different degrees of plant invasion significantly affect the richness of the soil fungal community. PLoS ONE. 8, e85490, 2013.
  • 3. WANG C.Y., XIAO H.G., ZHAO L.L., LIU J., WANG L., ZHANG F., SHI Y.C., DU D.L. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition. Ecotoxicology. 25, 555, 2016.
  • 4. CASTRO S., FERRERO V., COSTA J., SOUSA A.J., CASTRO M., NAVARRO L., LOUREIRO J. Reproductive strategy of the invasive Oxalis pescaprae: distribution patterns of floral morphs, ploidy levels and sexual reproduction. Biol. Invasions. 5, 1863, 2013.
  • 5. MURRAY B.R., PHILLIPS M.L. Investment in seed dispersal structures is linked to invasiveness in exotic plant species of south-eastern Australia. Biol. Invasions. 12, 2265, 2010.
  • 6. SUDING K.N., LAVOREL S., CHAPIN F.S., CORNELISSEN J.H.C., DÍAZ S., GARNIER E., GOLDBERG D., HOOPER D.U., JACKSON S.T., NAVAS M.-L. Scaling environmental change through the communitylevel: a trait-based response-and-effect framework for plants. Global Change Biol. 14, 1125, 2008.
  • 7. CLELAND E.E. Trait divergence and the ecosystem impacts of invading species. New Phytol. 189. 649. 2011.
  • 8. SCHARFY D., FUNK A., VENTERINK H.O., GUSEWELL S. Invasive forbs differ functionally from native graminoids, but are similar to native forbs. New Phytol. 189, 818, 2011.
  • 9. OBESO J.R. The costs of reproduction in plants. New Phytol. 155, 321, 2002.
  • 10. PIANKA E.R. On r-and K-selection. Am. Nat. 104, 592, 1970.
  • 11. ABRAHAMSON W.G., GADGIL M. Growth form and reproductive effort in goldenrods (Solidago, Compositae). Am. Nat. 107, 651, 1973.
  • 12. REZNICK D., BRYANT M.J., BASHEY F. r-and K-selection revisited: the role of population regulation in life-history evolution. Ecology. 83, 1509, 2002.
  • 13. NIU K.C., SCHMID B., CHOLER P., DU G.Z. Relationship between reproductive allocation and relative abundance among 32 species of a Tibetan alpine meadow: Effects of fertilization and grazing. PLoS ONE. 7, e35448, 2012.
  • 14. TIAN D.S., PAN Q.M., SIMMONS M., CHAOLU H., DU B.H., BAI Y.F., WANG H., HAN X.G. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition. PLoS ONE. 7, e42833, 2012.
  • 15. WANG X.Z., TAUB D.R., JABLONSKI L.M. Reproductive allocation in plants as affected by elevated carbon dioxide and other environmental changes: a synthesis using metaanalysis and graphical vector analysis. Oecologia. 177, 1075, 2015.
  • 16. WEINER J., CAMPBELL L.G., PINO J., ECHARTE L. The allometry of reproduction within plant populations. J. Ecol. 97, 1220, 2009.
  • 17. WEINER J., ROSENMEIER I., MASSONI E.S., VERA J.N., PLAZA E.H., SEBASTIA M.T. Is reproductive allocation in Senecio vulguris plastic. Botany. 87, 475, 2009.
  • 18. REN M.X., ZHANG Q.G. The relative generality of plant invasion mechanisms and predicting future invasive plants. Weed Res. 49, 449, 2009.
  • 19. HAUTIER Y., RANDIN C.F., STOCKLIN J., GUISAN A. Changes in reproductive investment with altitude in an alpine plant. J. Plant Ecol. 2, 125, 2009.
  • 20. THEOHARIDES K.A., DUKES J.S. Plant invasion across space and time, factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256, 2007.
  • 21. WILSON S.D., PINNO B.D. Environmentally-contingent behaviour of invasive plants as drivers or passengers. Oikos. 122, 129, 2013.
  • 22. SEASTEDT T.R., PYŠEK P. Mechanisms of plant invasions of North America and European grasslands. Annu. Rev. Ecol. Syst. 42, 133, 2011.
  • 23. KUEBBING S.E., CLASSEN A.T., SIMBERLOFF D. Two co-occurring invasive woody shrubs alter soil properties and promote subdominant invasive species. J. Appl. Ecol. 51, 124, 2014.
  • 24. KUEBBING S.E., SOUZA L., SANDERS N.J. Effects of co-occurring non-native invasive plant species on old-field succession. Forest Ecol. Manag. 324, 196, 2014.
  • 25. HAO J.H., QIANG S., CHROBOCK T., VAN KLEUNEN M., LIU Q.Q. A test of Baker’s law: breeding systems of invasive species of Asteraceae in China. Biol. Invasions. 13, 571, 2011.
  • 26. XIE Y., LI Z.Y., GREGG W.P., DIANMO L. Invasive species in China-an overview. Biodivers. Conserv. 10, 1317, 2001.
  • 27. WEBER E., SUN S.Q., LI B. Invasive alien plants in China: diversity and ecological insights. Biol. Invasions. 10, 1411, 2008.
  • 28. MAIN C.L., STECKEL L.E., HAYES R.M., MUELLER T.C. Biotic and abiotic factors influence horseweed emergence. Weed Sci. 54, 1101, 2006.
  • 29. ABHILASHA D., QUINTANA N., VIVANCO J., JOSHI J. Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? J. Ecol. 96, 993, 2008.
  • 30. YANG R.Y., YU G.D., TANG J.J., CHEN X. Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.). J. Environ. Sci. 20, 739, 2008.
  • 31. ZHAO S.Y., SUN S.G., DAI C., GITURU R.W., CHEN J.M., WANG Q.F. Genetic variation and structure in native and invasive Solidago canadensis populations. Weed Res. 55, 163, 2015.
  • 32. BONSER S.P., AARSSEN L.W. Interpreting reproductive allometry: individual strategies of allocation explain sizedependent reproduction in plant populations. Perspect. Plant Ecol. 11, 31, 2009.
  • 33. MAO W., GINGER A., LI Y.L., ZHANG T.H., ZHAO X.Y., HUANG Y.X. Life history strategy influences biomass allocation in response to limiting nutrients and water in an arid system. Pol. J. Ecol. 60, 381, 2012.
  • 34. MAO W., LI Y.L., CUI D., ZHAO X.Y., ZHANG T.H., LI Y.Q. Biomass allocation response of species with different life history strategies to nitrogen and water addition in sandy grassland in Inner Mongolia. Chin. J. Plant Ecol. 38, 125, 2014. (In Chinese)
  • 35. MANDUJANO M.C., GOLUBOV J., HUENNEKE L.F. Effect of reproductive modes and environmental heterogeneity in the population dynamics of a geographically widespread clonal desert cactus. Popul. Ecol. 49, 141, 2007.
  • 36. SCHLEUNING M., HUAMAN V., MATTHIES D. Flooding and canopy dynamics shape the demography of a clonal Amazon understorey herb. J. Ecol. 96, 1045, 2008.
  • 37. LIU H.Y., LIN Z.S., QI X.Z., ZHANG M.Y., YANG H. The relative importance of sexual and asexual reproduction in the spread of Spartina alterniflora using a spatially explicit individual-based model. Ecol. Res. 29, 905, 2014.
  • 38. SZYMURA M., SZYMURA T.H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant Species Biol. 30, 245, 2015.
  • 39. SHANNON C.E., WEAVER W. The Mathematical Theory of Communication. University of Illinois Press, Urbana, Illinois, 1, 1949.
  • 40. PIELOU E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131, 1966.
  • 41. XIAO H.G., WANG C.Y., LIU J., WANG L., DU D.L. Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities. J. For. Res. 26, 613, 2015.
  • 42. Wang C.Y., Xiao H.G., Liu J., Zhou J.W., Du D.L. Insights into the effects of simulated nitrogen deposition on leaf functional traits of Rhus typhina. Pol. J. Environ. Stud. 25, 1279, 2016.
  • 43. HERR C., CHAPUIS-LARDY L., DASSONVILLE N., VANDERHOEVEN S., MEERTS P. Seasonal effect of the exotic invasive plant Solidago gigantea on soil pH and P fractions. J. Plant Nutr. Soil Sci. 170, 729, 2007.
  • 44. CHEN B.M., PENG S.L., NI G.Y. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biol. Invasions. 11, 1291, 2009.
  • 45. ZHANG G.N., CHEN Z.H., ZHANG A.M., CHEN L.J., WU Z.J. Influence of climate warming and nitrogen deposition on soil phosphorus composition and phosphorus availability in a temperate grassland, China. J. Arid Land. 6, 156, 2014.
  • 46. CHEN X.X., LIANG Y., QI W., SU M., DU G.Z. Studies on reproductive allocation, floral size and its trade-off with floral number of annual Gentiana. Acta Prataculturae Sin. 18: 58, 2009 [In Chinese].
  • 47. WILK J.A., KRAMER A.T., ASHLEY M.V. High variation in clonal vs. sexual reproduction in populations of the wild strawberry, Fragaria virginiana (Rosaceae). Ann. Bot. 104, 1413, 2009.
  • 48. GRIME J.P. Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169, 1977.
  • 49. Grime J.P. Plant Strategies, vegetation processes, and ecosystem properties. Chichester, UK: John Wiley and Sons, 1979.
  • 50. MENG F.Q., CAO R., YANG D.M., NIKLAS K.J., SUN S.C. Trade-offs between light interception and leaf water shedding: a comparison of shade- and sun-adapted species in a subtropical rainforest. Oecologia. 174, 13, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5b5a83ca-d9e4-455c-a17d-2abb8e42ba3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.