PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 68 | 1 |

Tytuł artykułu

The influence of temperature and nitrogen source on cellulolytic potential of microbiota isolated from natural environment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacteria from the genus Bacillus are a rich source of commercial enzymes, including amylases, proteases, cellulases, glucose isomerase, and pullulanase. Cellulases account for 15% of the global market of industrial enzymes; thus, new microorganisms producing cellulases in a higher concentration and new ingredients, which can enhance the level of enzyme synthesis, are still needed. Many of cellulose-degrading microorganisms have been isolated so far and characterized in various regions of the world. In this study, we were looking for the bac-teria isolated from the natural environment with the high cellulolytic potential, which could be used as components of a biopreparation to accelerate decomposition of postharvest leftovers in agriculture. The 214 bacterial strains were isolated from environmental samples rich in cellulose and their ability to synthesize cellulases were examined using the diffusion method. Six strains, which have the highest diameter of clearing zone both for biomass and supernatant, were selected for identification. Optimization of biosynthesis of the cellulose-degrading enzymes indicated that optimal temperature of this process fluctuated in the range of 21–42°C (depending on the strain and carbon source). The highest cellulolytic activity was observed for the isolates designed as 4/7 (identified as Bacillus subtilis) and 4/18 (identified as Bacillus licheniformis) in a temperature of 32°C. With the use of a desirability function methodology, the optimal medium composition to achieve a simple, cost-efficient process of cellulases production was developed for both strains. These experiments show that microorganisms isolated from natural environmental samples have unique properties and potential for commercial applications (e.g. for biopreparations production).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

68

Numer

1

Opis fizyczny

p.105-114,fig.,ref.

Twórcy

autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
autor
  • INTERMAG Sp. z o.o., Olkusz, Poland
  • INTERMAG Sp. z o.o., Olkusz, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • Adney B, Baker J. Measurement of cellulase activities, Technical Report NREL/TP-510-42628 [Internet]. Golden, Colorado (USA): National Renewable Energy Laboratory; [cited 2018 Sep 02]. 2008.Available from: https://www.nrel.gov/docs/gen/fy08/42628.pdf
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi:10.1016/S0022-2836(05)80360-2 Medline
  • Behera BC, Parida S, Dutta SK, Thantoi HN. Isolation and iden-tification of cellulose degrading bacteria from mangrove soil of Mahandi river delta and their cellulase production ability. Am J Microb Res. 2014;2(1):41–46.
  • Białas W, Czerniak A, Dobrowolska A, Wojciechowska J, Grajek W.Controlling microbial growth in innovative dietary supplement based on the biomass of yeast Yarrowia lipolytica. J Microbiol Biotechnol Food Sci. 2016;05(05):389–395. doi:10.15414/jmbfs.2016.5.5.389-395
  • Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN,Donohoe BS, Decker SR, Lynd LR, Himmel ME.Lignocellulose deconstruction in the biosphere. Curr Opin Chem Biol. 2017;41:61–70. doi:10.1016/j.cbpa.2017.10.013 Medline
  • Derringer G, Suich R. Simultaneous optimization of several res-ponse variables. J Qual Technol. 1980;12(4):214–219.doi:10.1080/00224065.1980.11980968
  • Dutta S, Tarafder M, Islam R, Datta B. Characterization of cellulo-lytic enzymes of Fusarium soil Isolates. Biocatal Agric Biotechnol. 2018;14:279–285. doi:10.1016/j.bcab.2018.03.011
  • Gunka K, Commichau FM. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimila-tion, glutamate biosynthesis and degradation. Mol Microbiol. 2012;85(2):213–224. doi:10.1111/j.1365-2958.2012.08105.x Medline
  • Gupta P, Samant K, Sahu A. Isolation of cellulose-degrading bac-teria and determination of their cellulolytic potential. Int J Micro-biol. 2012;2012:1–5. doi:10.1155/2012/578925 Medline
  • Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotech. 2017;15(1):77–85.doi:10.1016/j.jgeb.2017.02.007
  • Irfan M, Safdar A, Syed Q, Nadeem M. Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase pro-duction and activity. Turk J Biochem. 2012;37(3):287–293. doi:10.5505/tjb.2012.09709
  • Kanokratana P, Wongwilaiwalin S, Mhuantong W, Tangphat-sornruang S, Eurwilaichitr L, Champreda V. Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches. J Biosci Bioeng. 2018;125(4):439–447.doi:10.1016/j.jbiosc.2017.10.014 Medline
  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol. 2008;57(5):503–507.doi:10.1007/s00284-008-9276-8 Medline
  • Kaur M, Arora S. Isolation and screening of cellulose degrading bacteria in kitchen waste and detecting their degrading potential. IOSR J Mech Civ Eng. 2012;1(2):33–35. doi:10.9790/1684-0123335
  • Kyrychenko OV. Market analysis and microbial bioprepartions crea-tion for crop production in Ukraine. Biotech Acta. 2015;8(4):40–52.
  • Li H, Wu S, Wirth S, Hao Y, Wang W, Zou H, Li W, Wang G.Diversity and activity of cellulolytic bacteria, isolated from the gut contents of grass carp (Ctenopharyngodon idellus) (Valenciennes) fed on Sudan grass (Sorghum sudanense) or artificial feedstuffs. Aquacult Res. 2016;47(1):153–164. doi:10.1111/are.12478
  • Liang YL, Zhang Z, Wu M, Wu Y, Feng JX. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Res Int. 2014; 2014:1–13. doi:10.1155/2014/512497 Medline
  • Manabe K, Kageyama Y, Morimoto T, Ozawa T, Sawada K, Endo K, Tohata M, Ara K, Ozaki K, Ogasawara N. Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol. 2011;77(23): 8370–8381. doi:10.1128/AEM.06136-11 Medline
  • Maughan H, Van der Auwera G.Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect Genet Evol. 2011;11(5):789–797.doi:10.1016/j.meegid.2011.02.001 Medline
  • Mayrhofer S, Domig KJ, Mair C, Zitz U, Huys G, Kneifel W.Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Appl Environ Microbiol. 2008;74(12): 3745–3748. doi:10.1128/AEM.02849-07 Medline
  • McDonald JE, Rooks DJ, McCarthy AJ. Methods for the isolation of cellulose-degrading microorganisms. In: Gilbert HJ, editor. Methods in enzymology. Cellulases. Vol. 510. San Diego (USA): Elsevier Academic Press. 2012; p. 349–374.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428.doi:10.1021/ac60147a030
  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P.Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev. 2000;64(3): 548–572. doi:10.1128/MMBR.64.3.548-572.2000 Medline
  • Niranjane AP, Madhou P, Stevenson TW. The effect of carbo-hydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzyme Microb Technol. 2007;40(6):1464–1468.doi:10.1016/j.enzmictec.2006.10.041
  • Pastuszewska T, Gryń G. Cellulolytic activity and virulence of Clavi bacter michiganensis subsp. sepedonicus. Biuletyn IHAR. 2013;270:123–131.
  • Pietraszek P, Walczak P. Characteristic and applications of Bacillusstrains isolated from soil. Polish J Agron. 2014;16:37–44.
  • Podpora B, Świderski F, Sadowska A, Rakowska R, Wasiak-Zys G. Spent brewer’s yeast extracts as a new component of func-tional food. Czech J Food Sci. 2016;34(6):554–563.doi:10.17221/419/2015-CJFS
  • Ray AK, Bairagi A, Ghosh KS, Sen SK. Optimization of fermen-tation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyol Piscat. 2007;37(1):47–53. doi:10.3750/AIP2007.37.1.07
  • Ryu JH, Kim H, Beuchat LR. Spore formation by Bacillus cereusin broth as affected by temperature, nutrient availability, and manganese. J Food Prot. 2005;68(8):1734–1738.doi:10.4315/0362-028X-68.8.1734 Medline
  • Shrestha S, Fonoll X, Khanal SK, Raskin L. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anae-robic digestion: current status and future perspectives. Bioresour Technol. 2017;245 Pt A:1245–1257.doi:10.1016/j.biortech.2017.08.089 Medline
  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD,Doré J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the hu-man gut. Appl Environ Microbiol. 1999;65(11):4799–4807.Medline
  • Toya Y, Hirasawa T, Morimoto T, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H.13C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain. J Biotechnol. 2014;179(10):42–49.doi:10.1016/j.jbiotec.2014.03.025 Medline
  • Upadhyaya SK, Manadhar A, Mainali H, Pokhrel AR, Rijal A, Pradhan B, Koirala B. Isolation and characterization of cellulolytic bacteria from gut of termite. Rentech Symp Comp. 2012;1:14–18.
  • Wesołowska-Trojanowska M, Targoński Z. Cellulases – properties, application and production. Eng Sci Technol. 2013; 2(13): 106–121.
  • Wood TM, Bhat KM. Methods for measuring cellulase activities. In: Wood WA, Kellogg JA, editors. Methods in Enzymology. Cellulose and Hemicellulose. Vol. 160. New York (USA): Academic Press. 1998; p. 87–112

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5b5269e0-14c3-4446-97f1-45dcb595ef93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.