PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 11 |

Tytuł artykułu

Photosynthesis of soybean under the action of a photosystem II-inhibiting herbicide

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Photosynthesis, the fundamental physiological process of plant responsible for the growth and yield of crops, is strongly affected by environmental stresses. Several methods have been used to study changes in the physiological parameters of plants exposed to stresses. The work aimed to study physiological parameters related to photosynthesis in leaf discs of soybean plants exposed to a photosystem II-inhibiting herbicide. Soybean leaf discs obtained from mature leaves of plants in the vegetative stage immersed in bentazon herbicide solutions at concentrations of 0, 100, 250 or 500 µM were evaluated. In experiment I, the effect of the herbicide on chlorophyll a fluorescence transient was measured using a portable fluorometer. In the second experiment, the effect of the herbicide on modulated chlorophyll a fluorescence and gas exchange were evaluated, with the latter being measured with an infrared gas analyzer. The evaluations of transient and modulated fluorescence provided additional information on the photosynthetic activity of soybean leaf discs exposed to the action of bentazon. For the fluorescence transient analysis, performance indices were the parameters most sensitive to the action of bentazon, showing a decrease of approximately 70 % at a dose of 500 µM. For the modulated fluorescence analysis, the photochemical quenching coefficient, the electron transport rate, the photochemical efficiency of photosystem II and the net assimilation rate, decreased in response to herbicide application, with values that were almost equal to zero at a dose of 500 µM, which are the parameters that showed the greatest sensitivity to bentazon in soybean.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

11

Opis fizyczny

p.3051-3062,fig.,ref.

Twórcy

  • Plant Metabolism Laboratory, Department of Botany, Biology Institute, Federal University of Pelotas, Pelotas, 96010-900, Brazil
  • Department of Engineering, Technology Institute, Rural Federal University of Rio de Janeiro, Seropedica, 23897-000, Brazil
  • Plant Metabolism Laboratory, Department of Botany, Biology Institute, Federal University of Pelotas, Pelotas, 96010-900, Brazil
autor
  • Plant Metabolism Laboratory, Department of Botany, Biology Institute, Federal University of Pelotas, Pelotas, 96010-900, Brazil
  • Department of Botany, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Bolsista CAPES, Pelotas, 96010-900, Brazil
autor
  • Plant Metabolism Laboratory, Department of Botany, Biology Institute, Federal University of Pelotas, Pelotas, 96010-900, Brazil

Bibliografia

  • Araus JL, Hogan KP (1994) Leaf structure and patterns of photoinhibition in two neotropical palms in clearing and forest understory during the dry season. Am J Bot 81:726–738. doi:10.2307/2445651
  • Armel GR, Rardon PL, McCormick MC, Ferry NM (2007) Differential response of several carotenoid biosynthesis inhibitors in mixture with atrazine. Weed Technol 21:947–953. doi:10.1614/WT-06-133.1
  • Böger P, Beese B, Miller R (1977) Long-term effects of herbicides on the photosynthetic apparatus II: Investigation on bentazone inhibition. Weed Res 17:61–67. doi:10.1111/j.1365-3180.1977.tb00446.x
  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514. doi:10.2307/2389624
  • Bukhov NG, Egorova EA, Govindachary S, Carpentier R (2004) Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids. Biochim Biophys Acta 1657:121–130. doi:10.1016/j.bbabio.2004.04.008
  • Buonasera K, Lambreva M, Rea G, Touloupakis E, Giardi MT (2011) Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants. Anal Bioanal Chem 401:1139–1151. doi:10.1007/s00216-011-5166-1
  • Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas-exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257
  • Chen S, Yin C, Strasser RJ, Govindjee, Yang C, Qiang S (2012) Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol Biochemv 52:38–51. doi:10.1016/j.plaphy.2011.11.004
  • Dayan FE, Zaccaro MLM (2012) Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pestic Biochem Physiol 102:189–197. doi:10.1016/j.pestbp.2012.01.005
  • Earl HJ, Tollenaar M (1998) Relationship between thylakoid electron transport and photosynthetic uptake in leaves of three maize (Zea mays L.) hybrids. Photosynth Res 58:245–257. doi:10.1023/A:1006198821912
  • Edwards GE, Baker NR (1993) Can CO₂ assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102. doi:10.1007/BF02187468
  • Frankart C, Eullaffroy P, Vernet G (2003) Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environ Experim Bot 49:159–168. doi:10.1016/S0098-8472(02)00067-9
  • Guo Y, Tan J (2011) Modeling and simulation of the initial phases of chlorophyll fluorescence from Photosystem II. BioSystems 103:152–157. doi:10.1016/j.biosystems.2010.10.008
  • Haldimann P, Strasser RJ (1999) Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). Photosynth Res 62:67–83. doi:10.1023/A: 1006321126009
  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739. doi:10.1111/j.0022-3646.1993.00729.x
  • Hugie JA, Bollero GA, Tranel PJ, Riechers DE (2008) Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus). Weed Sci 56:265–270. doi:10.1614/WS-07-128.1
  • Juneau P, Lawrence JE, Suttle CA, Harrison PJ (2003) Effects of viral infection on photosynthetic processes in the bloom-forming alga Heterosigma akashiwo. Aquat Microb Ecol 31:9–17. doi:10.3354/ame031009
  • Lawlor DW, Tezara T (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579. doi:10.1093/aob/mcn244
  • Lazár D, Ilík P (1997) High-temperature induced chlorophyll fluorescence changes in barley leaves: comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. Plant Sci 124:159–164. doi:10.1016/s0168-9452(97)04602-5
  • Macedo RS, Lombardi AT, Omachi CY, Rörig LR (2008) Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum. Toxicol In Vitro 22:716–722. doi:10.1016/j.tiv.2007.11.012
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659
  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on PS II in wheat leaves. Plant Physiol Biochem 48:16–20. doi:10.1016/j.plaphy.2009.10.006
  • Melis A (1985) Functional properties of Photosystem IIᵦ in spinach chloroplasts. Biochim Biophys Acta 808:334–342. doi:10.1016/0005-2728(85)90017-9
  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566. doi:10.1104/pp.125.4.1558
  • Oukarroum A, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and rewatering. Environ Experim Bot 60:438–446. doi:10.1016/j.envexpbot.2007.01.002
  • Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347. doi:10.1146/annurev-arplant-042809-112119
  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29. doi:10.1023/A:1020125719386
  • Roháček K (2010) Method for resolution and quantification of components of the non-photochemical quenching (qN). Photosynth Res 105:101–113. doi:10.1007/s11120-010-9564-6
  • Schreiber U, Kiahl M, Klimant I, Reising H (1996) Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Photosynth Res 47:103–109. doi:10.1007/BF00017758
  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257. doi:10.1016/j.jphotobiol.2010.12.010
  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I–P rise. Photosynth Res 113:15–61. doi:10.1007/s11120-012-9754-5
  • Strasser RJ, Stirbet AD (1998) Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O-J-I-P). Math Comput Simulat 48:3–9. doi:10.1016/S0378-4754(98)00150-5
  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental question: the JIP test. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic, Dordrecht, pp 977–980
  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42. doi:10.1111/j.1751-1097.1995.tb09240.x
  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms. Taylor and Francis, London, pp 445–483
  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, vol. 19, Springer, Dordrecht, The Netherlands, pp 321–362
  • Thach LB, Shapcott A, Schmidt S, Critchley C (2007) The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. Photosynth Res 94:423–436. doi:10.1007/s11120-007-9207-8
  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-michael M, Govindjee, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438. doi:10.1016/j.bbabio.2010.02.002

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5b3019b1-d6c3-4178-8a53-2a8073fcb28b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.