PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 2 |

Tytuł artykułu

ABA and GA signaling pathways interact and regulate seed germination and seedling development under salt stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil salinity is one of the most significant abiotic stresses limiting plant growth. The ability of plant cells to adapt and survive under salt stress conditions involves triggering a network of signaling events including hormones such as abscisic acid (ABA) known to regulate many important aspects of growth and development. ABA is also known to play a critical role in stress responses such as the regulation of seed germination under salt and osmotic stress. Components of the gibberellic acid (GA) signaling pathway have also been shown to regulate germination; however, the involvement of GA signaling in salt and osmotic stress is largely unexamined. Here, we examined the responses of mutants in the GA signaling pathway (rgl2 and spy) and in the ABA signaling pathway (abi3 and abi5) to salt (NaCl) and osmotic (mannitol) stress during seed germination and early seedling development. Several mutants show resistance to increased levels of both salt and osmotic stress at germination and later stages of seedling development suggesting a role for ABA and GA signaling in these processes. qRT-PCR was employed to determine the effect of salt stress on seed germination via transcriptional control of the components in GA or ABA signaling pathways. We found that RGL2, ABI3, and ABI5 transcripts are greatly induced by NaCl in wildtype plants, but show little if any induction by NaCl in mutant backgrounds suggesting that this regulation of induction during salt stress may occur through ABA–GA crosstalk. Overall, our results indicate that each of the ABA and GA signaling pathways is individually involved in regulation of various seedling developmental stages under stress conditions. In addition, these two hormone pathways appear to be interacting in the regulation of germination and early seedling growth under salt and osmotic stress conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

2

Opis fizyczny

p.261-271,fig.,ref.

Twórcy

autor
  • Department of Biological Sciences, Auburn University, Auburn 36849-5407, Al, USA
  • Department of Foof Quality and Safety, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
  • Department of Biological Sciences, Auburn University, Auburn 36849-5407, Al, USA
  • Department of Biological Sciences, Auburn University, Auburn 36849-5407, Al, USA

Bibliografia

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94
  • Arroyo A, Bossi F, Finkelstein RR, León P (2003) Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 133(1):231–242
  • Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34(1):67–75
  • Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129(4):1533–1543
  • Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30(3):373–383
  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12(4):599–609
  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10(6):1043–1054
  • Himmelbach A, Iten M, Grill E (1998) Signalling of abscisic acid to regulate plant growth. Phil Trans 353:1439–1444
  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479
  • Kim S-G, Lee A-K, Yoon H-K, Park C-M (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J 55:77–88
  • Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16:646–658
  • Lopez-Molina L, Mongrand S, Chua N-H (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci 98(8):4782–4787
  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H (2002) ABI5 acts downstream of ABI3 to execute an ABAdependent growth arrest during germination. Plant J 32:317–328
  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–729
  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20(10): 2729–2745
  • Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salttolerant mutants in Arabidopsis thaliana. Genetics 154(1):421–436
  • Quesada V, García-Martínez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130(2):951–963
  • Ruggiero B, Koiwa H, Manabe Y, Quist TM, Inan G, Saccardo F, Joly RJ, Hasegawa PM, Bressan RA, Maggio A (2004) Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stresstolerant mutant in Arabidopsis. Plant Physiol 136(2):3134–3147
  • Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28(6):655–662
  • Sun T-P (2008) Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis book. Rockville-American Society of Plant Biologists. doi:10.1199/tab.0103. http://www.aspb.org/publications/arabidopsis/
  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T-P (2004) Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135(2): 1008–1019
  • Vicient C, Delseny M (1999) Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem 268:412–413
  • Werner WE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol Plant 93:659–666
  • Xiong L, Lee B-h, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15(15):1971–1984
  • Yuan K, Wysocka-Diller J (2006) Phytohormone signalling pathways interact with sugars during seed germination and seedling development. J Exp Bot 57:3359–3367

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5aa9f8e0-7cbd-4609-8942-28b0f1766867
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.