PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 161 | 11 |

Tytuł artykułu

Naturalne suszenie surowca drzewnego w miejscu pozyskania

Treść / Zawartość

Warianty tytułu

EN
Natural drying of wood in the cutting area

Języki publikacji

PL

Abstrakty

EN
Wood obtained from freshly cut trees has a high moisture content and therefore its mass per volume unit is higher than the mass of dry wood. The natural drying is a simple and effective method of weight (moisture content) reduction, making a better use of the vehicle's payload, and thus reducing costs, including environmental costs. The conclusion is based on simulations and analyzes attempting to evaluate different solutions. As evidenced, the drying process of logs depends on numerous factors, which entails attempts at development of an optimal logging method, especially concerning energy wood, allowing for maximum value growth in as little time as possible. The suggestions cover various forms of logging (of whole trees, long timber), arranging (in piles, bundles), storing (in stands, by the roadside near cutting areas), and protection. Combined methods such as storing under canvas for winter only or storing in cutting areas and later in piles at the exit road also work in practice, but require more funds because their cost is determined by the number of stages composing the whole process. In case of wood, development of an optimal and simultaneously universal method used to prepare the lumber for transport and its delivery with consideration of as little environmental impact as possible is complicated. The numerous variables, some of which cannot be controlled or affected, create a considerable scientific problem as well. The authors covered in the presented literature review often stress the role of specific weather conditions accompanying an experiment or its location, the storage method, or lumber dimensions in the drying process. Storage time is perceived as equally important, but it is a derivative more or less determined by the previous variables. Previous studies of drying at the cutting area have been focused mainly on energy wood and less on industrial wood. They analysed the results of long−term storage and did not stress the potential advantages of short−term drying. Furthermore, we do not have sufficient information on species, including forest trees, which have a lower share in the volume of the logged wood. Advanced research can help establish the minimum mass (moisture content) with considerable impact on supply chain effectiveness improvement or evaluated various storing and drying methods. We reviewed reports explaining the impact of various factors on natural drying of wood, models and storage effects, and analyzing potential economic and environmental benefits.

Wydawca

-

Czasopismo

Rocznik

Tom

161

Numer

11

Opis fizyczny

s.898-908,bibliogr.

Twórcy

autor
  • Katedra Użytkowania Lasu, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71A, 60-625 Poznań
autor
  • Katedra Użytkowania Lasu, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71A, 60-625 Poznań
  • Katedra Maszyn Ogrodniczych i Leśnych, Uniwersytet Przyrodniczy w Lublinie, ul.Głęboka 28, 20-612 Lublin
  • Katedra Hodowli Lasu, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71A, 60-625 Poznań

Bibliografia

  • Acuna M., Anttila P., Sikanen L., Prinz R., Asikainen A. 2012. Predicting and controlling moisture content to optimise forest biomass logistics. Croatian Journal of Forest Engineering 33 (2): 225-238.
  • Anisimov P., Onuchin E., Vishnievskaja M. 2017. Modeling pine and birch whole tree drying in bunches in the cutting area. Croatian Journal of Forest Engineering 38 (1): 11-17.
  • Barrs H. D. 1968. Determination of water deficits in plant tissue. W: Kozlowski T. T. [red.]. Water deficits and plant growth. V. 1. New York, Academic Press. 235-368.
  • Beedlow P. A., Tingey D. T., Waschmann R. S., Phillips D. L., Johnson M. G. 2007. Bole water content shows little seasonal variation in century-old Douglas-fir trees. Tree Physiology 27: 737-747.
  • Bennamount L., Afzal M. T., Chauhan S. 2017. Assessment of moisture effect in simulating forest biomass supply chain strategy: case study on New Brunswick, Canada. Croatian Journal of Forest Engineering 38 (1): 19-31.
  • Brand M. A., Bolzon de Muńiz G. I., Ferreira W., Brito J. O. 2011. Storage as a tool improve wood fuel quality. Biomass and Bioenergy 35 (7): 2581-2588.
  • Busenius M., Engler B., Smaltschinski T., Opferkuch M. 2015. Consequences of increasing payloads on carbon emissions – an example from the Bavaria State Forest Enterprise (BaySF). Forestry Letters 108: 7-14.
  • Cermak J., Kucera J., Bauerle W. L., Phillips N., Hinckley T. M. 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology 27: 181-198.
  • Ciganas N., Raila A. 2010. Analysis of heating value variations in stored wood. Proceedings of the Conference ‘Engineering for rural development’. 27-28 May 2010, Jelgava.
  • Cinotti B. 1989. Winter moisture content and frost-crack occurrence in oak trees (Quercus petraea Liebl. and Q. robur L.). Annales des sciences forestičres, INRA/EDP Sciences 46 (Suppl): 614-616.
  • Civitarese V., Spinelli R., Barontini M., Gallucci F., Santangelo E., Acampora A., Scarfone A., Del Giudice A., Pari L. 2015. Open-air drying of cut and windrowed short-rotation poplar stems. Bioenergy Research 8 (4): 1614-1620.
  • Clark A. III, Daniels R. F. 2000. Estimating moisture content of tree-length roundwood. Pulping/Process and Product Quality Conference, Sheraton Boston.
  • Cutshall J., Greene D., Baker S., Mitchell D. 2011. Transpirational drying effects on energy and ash content from whole-tree chipping operations in a southern pine plantation. Proceedings of the 34th Council on Forest Engineering annual meeting. June 2011. Quebec City, Canada.
  • Cutshall J., Greene J., B., Dale W., Baker S., A. 2013. Transpirational drying effects on energy and ash content from whole-tree southern pine plantation chipping operations. Southern Journal of Applied Forestry 37 (3): 133-139.
  • van Dyken S., Bakken B. H., Skjelberd H. I., 2009. Linear mixed-integer models for biomass supply chains with transport, storage and processing. Energy 35 (3): 1338-1350.
  • Erber G., Holzleitner F., Kastner M., Stampfer K. 2017. Impact of different time interval bases on the accuracy of meteorological data based drying models for oak (Quercus L.) logs stored in piles for energy purposes. Croatian Journal of Forest Engineering 38 (1): 1-9.
  • Erber G., Kanzian C., Stampfer K. 2012. Predicting moisture content in a pine logwood pile for energy purposes. Silva Fennica 46 (4): 555-567.
  • Erber G., Kanzian C., Stampfer K. 2016. Modelling natural drying of European beech (Fagus sylvatica L.) logs for energy based on meteorological data. Scandinavian Journal of Forest Research 31 (3): 294-301. DOI: 10.1080/ 02827581.2015.1080294.
  • Erber G., Küchmaier M. 2017. Research trends in European forest fuel supply chains: a review of the last ten years (2007-2017). Part one: harvesting and storage. Croatian Journal of Forest Engineering 38 (2): 269-278.
  • Filbakk T., Hřibř O. A., Dibdiakova J., Nurmi J. 2011. Modelling moisture content and dry matter loss during storage of logging residues for energy. Scandinavian Journal of Forest Research 26 (3): 267-277. DOI: 10.1080/ 02827581.2011.553199.
  • Fromm J. H., Sautter I., Matthies D., Kremer J., Schumacher P., Ganter C. 2001. Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Physiology 127 (2): 416-425.
  • Garret L. D. 1985. Delayed processing of felled trees to reduce moisture content. Forest Products Journal 35 (3): 55-59.
  • Gislerud O. 1990. Drying and storing of comminuted wood fuels. Biomass 22: 229-244.
  • Golser M., Pichler W., Hader F. 2005. Energieholztrocknung. Holzforschung, Wien.
  • He X., Lau A., Sokhansanj S., Lim J., Bi X. 2015. Application of a model to simulate the wetting and drying processes of woody biomass in the field. Drying Technology 33 (4): 434-442.
  • Helińska-Raczkowska L. 1996. Zmienność wilgotności i gęstości drewna w świeżo ściętych pniach brzozy (Betula pendula Roth.). Folia Forestalia Polonica Series B 27: 23-30.
  • Hultnäs M., Nylinder M., Ĺgren A. 2013. Predicting the green density as a means to achieve the volume of Norway spruce. Scandinavian Journal of Forest Research 28 (3): 257-265. DOI: 10.1080/02827581.2012.735697.
  • Janiczek M., Bobrowicz E. 1952. Wilgotność drewna świeżego buków pomorskich i karpackich. Prace IBL 78: 44.
  • Jäppinen E., Korpinen O. J., Ranta T. 2014. GHG emissions of forest-biomass supply chains to commercial-scale liquid-biofuel production plants in Finland. GCB Bioenergy 6 (3): 290-299.
  • Jelonek T., Pazdrowski W., Tomczak A. 2009. The effect of biological class and age on physical and mechanical properties of European larch (Larix decidua MILL.) in Poland. Wood Research 54 (1): 1-14.
  • Jirjis R. 1995. Storage and drying of wood fuels. Biomass and Bioenergy 9: 181-190.
  • Kanzian C., Kühmaier M., Erber G. 2016. Effects of moisture content on supply costs and CO2 emmision for an optimized energy wood supply network. Croatian Journal of Forest Engineering 37 (1): 51-60.
  • Kanzian C., Kühmaier M., Zazgornik J., Stampfer K. 2013. Design of forest energy supply networks using multi-objective optimization. Biomass and Bioenergy 58: 294-302.
  • Klepac J., Rummer B., Seixas F. 2008. Seasonal effect on moisture loss of loblolly pine. Proceedings of the 31st Council on Forest Engineering Annual Meeting at Charleston, South Carolina.
  • Kraszkiewicz A., Szpryngiel M. 2008. Wilgotność drewna robinii akacjowej w aspekcie wykorzystania na cele energetyczne. Inżynieria Rolnicza 9 (107): 159-164.
  • Krigstin S., Wetzel S. 2016. A review of mechanisms responsible for changes to stored woody biomass fuels. Fuel 175: 75-86.
  • Kubiak M. 1972. Dobowe wahania wilgotności drewna drzew na pniu w młodniku. Sylwan 116 (1): 23-28.
  • Kubiak M. 1977. Zmiany wilgotności drewna tyczek sosnowych składowanych w stosie na wolnym powietrzu. Sylwan 121 (4): 55-59.
  • Kubiak M. 1978. Zmiany wilgotności małowymiarowego drewna bukowego składowanego w stosach na wolnym powie-trzu. Sylwan 122 (12): 57-62.
  • Kubiak M., Grodecki J. 1977. Zmiany wilgotności drewna drzew na pniu w zależności od miejsca pobrania próbek na strzale. Sylwan 121 (5): 27-30.
  • Kubiak M., Kosicki W. 1969. Wilgotność drewna drzewostanów sosnowych różnych klas wieku. Prace Komisji Nauk Rolniczych i Leśnych PTPN 28: 176-183.
  • Laurila J., Lauhanen R. 2010. Moisture content of Norway spruce stump wood at clear cutting areas and roadside storage sites. Silva Fennica 44 (3): 427-434.
  • Manzone M. 2015. Energy and moisture losses during poplar and black locust logwood storage. Fuel Processing Technology 138: 194-201. DOI: 10.1016/j.fuproc.2015.05.026.
  • van der Merwe J.-P., Ackerman P., Pulkki R., Längin D. 2016. The impact of log moisture content on chip size distribution when processing eucalyptus pulpwood. Croatian Journal of Forest Engineering 37 (2): 297-307.
  • Millers M. 2013. The proportion of heartwood in conifer (Pinus sylvestris L., Picea abies [L.] Karst.) trunks and its influence on trunk wood moisture. Journal of Forest Science 59 (8): 295-300.
  • Millers M., Magaznieks J. 2012. Scots pine (Pinus sylvestris L.) stem wood and bark moisture and density influencing factors. W: Gaile Z. [red.]. Annual 18th International Scientific Conference Proceedings. Research for Rural Development 2012. Jelgava, 16-18. May 2012. Latvia University of Agriculture. 91-96.
  • Nurmi J., Hillebrand K. 2001. Storage alternatives affect fuelwood properties of Norway spruce logging residues. New Zealand Journal of Forestry Science 31 (3): 289-297.
  • Nurmi J., Hillebrand K. 2007. The characteristics of whole-tree fuel stocks from silvicultural cleanings and thinnings. Biomass and Bioenergy 31 (6): 381-392.
  • Patterson W. A., Post I. L. 1980. Delayed bucking and bolewood moisture content. Journal of Forestry 78 (7): 407-408.
  • Rafael S., Tarelho L., Monteiro A., Monteiro T., Gonçalves C., Freitas S., Lopes M., 2015. Atmospheric emissions from forest biomass residues to energy supply chain: A case study in Portugal. Environmental Engineering Science 32 (6): 505-515.
  • Rogers K. E. 1981. Preharvest drying of logging residues. Forest Products Journal 31 (12): 32-36.
  • Routa J., Kolström M., Ruotsalainen J., Sikanen L. 2015a. Precision measurement of forest harvesting residue moisture change and dry matter losses by constant weight monitoring. International Journal of Forest Engineering 26 (1): 71-83. DOI: 10.1080/14942119.2015.1012900.
  • Routa J., Kolström M., Ruotsalainen J., Sikanen L. 2015b. Validation of prediction models for estimating the moisture content of small diameter stem wood. Croatian Journal of Forest Engineering 36 (2): 283-291.
  • Röser D., Mola-Yudego B., Sikanen L., Prinz R., Gritten D., Emer B., Väätäinen K., Erkkilä A. 2011. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations. Biomass and Bioenergy 35 (10): 4238-4247.
  • Saralecos J. D., Keefe R. F., Tinkham W. T., Brooks R. H., Smith A., Johnson L. R. 2014. Effects of harvesting systems and bole moisture loss on weight scaling of Douglas-fir sawlogs (Pseudotsuga menziesii var. glauca Franco). Forests 5 (9): 2289-2306.
  • Sinclair S. A., Hassler C. C., Bolstad K. 1984. Moisture loss in aspen logging residue. Wood and Fiber Science 16 (1): 93-96.
  • Sosa A., Acuna M., McDonnell K., Devlin G. 2015. Managing the moisture content of wood biomass for the optimisation of Ireland’s transport supply strategy to bioenergy markets and competing industries. Energy 86: 354-368.
  • Spinelli R., Magagnotti N., Paletto G., Preti C. 2011. De¬ termining the impact of some wood characteristics on the performance of a mobile chipper. Silva Fennica 45 (1): 85-95.
  • Stampfer K., Kanzian C. 2006. Current state and development possibilities of wood chip supply chains in Austria. Croatian Journal of Forest Engineering 27 (2): 135-145.
  • Stokes B. J., McDonald T. P., Kelley T. 1993. Transpirational drying and costs for transporting woody biomass – a preliminary review. W: Proceedings of IEA/BA Task IX, Activity 6: Transport and Handling. 1994 May 16-25. New Brunswick, Aberdeen University: 76-91.ld.
  • Stokes S. A., Watson W. F., Miller D. E. 1987. Transpirational drying of energywood. American Society of Agricultural Engineers Paper 87-1530: 1-14.
  • Tomczak A., Grodziński G., Jakubowski M., Jelonek T., Grzywiński W. 2018. Effects of the short-term storage method on moisture loss and weight change in beech timber. Croatian Journal of Forest Engineering 39 (1) [w druku].
  • Tomczak A., Jakubowski M., Jelonek T., Wąsik R., Grzywiński W. 2016. Mass and density of pine pulpwood harvested in selected stands from the Forest Experimental Station in Murowana Goślina. Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 15 (2): 105-112. DOI: 10.17306/J.AFW.2016.2.13.
  • Tomczak A., Jelonek T. 2012. Parametry techniczne młodocianego i dojrzałego drewna sosny zwyczajnej. Sylwan 156 (9): 695-702.
  • Tomczak A., Jelonek T. 2015. Mass and density of birch pulpwood harvested from stands in different types of forest habitats. Forestry Letters 108: 27-31.
  • Tomczak A., Jelonek T., Jakubowski M., Grzywiński W., Kryger G. 2015a. Weight and green density of birch pulpwood harvested from the selected stands of Kaczory Forest Inspectorate. Ann. WULS – SGGW, For. And Wood Technol. 91: 165-171.
  • Tomczak A., Jelonek T., Jakubowski M., Wąsik R., Jaszczak A. 2015b. Weight and green density of oak pulpwood harvested from the selected stands of Łąck Forest Inspectorate. Ann. WULS – SGGW, For. And Wood Technol. 91: 172-178.
  • Tomczak A., Wesołowski P., Jelonek T., Jakubowski M. 2016. Utrata masy i zmiany gęstości średniowymiarowego surowca sosnowego pozyskanego i magazynowanego w okresie letnim. Sylwan 160 (8): 619-626.
  • Vasković S., Halilović V., Gvero P., Medaković V., Musić J. 2015. Multi-criteria optimization concept for the selection of optimal solid fuels supply chain from wooden biomass. Croatian Journal of Forest Engineering 36 (1): 109-123.
  • Visser R., Berkett H., Spinelli R. 2014. Determining the effect of storage conditions on the natural drying of radiata pine logs for use energy. New Zealand Journal of Forest Science 44 (3): 1-8. DOI: 10.1186/1179-5395-44-3.
  • Wąsik R., Michalec K., Barszcz A. 2015. The variability of certain macrostructural features and the density of grand fir (Abies grandis Lindl.) wood from selected stands in southern Poland. Drewno. Prace Naukowe. Doniesienia. Komunikaty 58 (195): 45-58.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5aa6b33c-b0f0-46d7-9158-7e72961b54e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.