PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 12 | 1 |

Tytuł artykułu

Comparison of yield and morphological characters of rhubarb (Rheum rhaponticum L.) ‘Karpow Lipskiego’ plants propagated in vitro and by conventional methods

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Porównanie plonowania oraz cech morfologicznych roślin rabarbaru (Rheum rhaponticum L.) ‘Karpow Lipskiego’ rozmnażanego in vitro oraz metodami tradycyjnymi

Języki publikacji

EN

Abstrakty

EN
The present study investigated different methods of propagation of the rhubarb cultivar ‘Karpow Lipskiego’: vegetatively from tissue cultures and by division of the mother plant as well as generatively from seed. The study also evaluated the usefulness of propagation material for establishing a rhubarb plantation. To produce in vitro plantlets, shoots were placed on modified Murashige and Skoog medium containing different cytokinins: benzyladenine (BA – 4.4, 11.1, 22.2 μmol·dm-3), kinetin (4.7, 11.6, 23.3 μmol·dm-3), isopentenyl adenine (2iP – 4.9, 12.3, 24.4 μmol·dm-3) as well as on control medium without growth regulators. Cuttings were obtained by division of crowns, while seedlings from seeds. In the period 2004–2006, vegetatively and generatively propagated plants were grown in a nursery. The obtained propagation material was used to establish a rhubarb plantation. Yield of field-grown plants was evaluated in the years 2007–2009. In the first year of cultivation in the nursery, plants propagated in vitro in the medium with the addition of kinetin at a concentration of 11.6 ȝmol dm-3 or 2iP at 12.3 ȝmol dm-3 developed crowns with the highest average weight of 1.48 and 1.05 kg, respectively. In the second year of cultivation in the nursery in the treatment with grown regulators applied, the average rhubarb crown weight ranged from 2.51 to 3.33 kg, while for the control treatment it was 1.78 kg. To characterize the population of in vitro plants, they were compared with plants obtained by division of the mother plant and from seeds. Plants propagated vegetatively from in vitro plantlets produced crowns with the highest average weight (0.83 kg), followed by those obtained from division of mother plants (0.79 kg), while plants produced from seeds had crowns with a much lower average weight (0.54 kg). In the second year of cultivation in the nursery, vegetatively and generatively propagated plants were characterized by a similar size and greater uniformity than in the first year. In the first year of planting (2007), petiole yield obtained from micropropagated plants was higher by 0.7 kg·plant-1 compared to generatively propagated plants, whereas in the second year of cultivation this difference was smaller and amounted to 0.6 kg· plant-1. In the third year of the plantation, plant productivity was more equal. During the study years, by far fewer leaves were harvested from generatively propagated plants compared to plants propagated The present study investigated different methods of propagation of the rhubarb cultivar ‘Karpow Lipskiego’: vegetatively from tissue cultures and by division of the mother plant as well as generatively from seed. The study also evaluated the usefulness of propagation material for establishing a rhubarb plantation. To produce in vitro plantlets, shoots were placed on modified Murashige and Skoog medium containing different cytokinins: benzyladenine (BA – 4.4, 11.1, 22.2 μmol·dm-3), kinetin (4.7, 11.6, 23.3 μmol·dm-3), isopentenyl adenine (2iP – 4.9, 12.3, 24.4 μmol·dm-3) as well as on control medium without growth regulators. Cuttings were obtained by division of crowns, while seedlings from seeds. In the period 2004–2006, vegetatively and generatively propagated plants were grown in a nursery. The obtained propagation material was used to establish a rhubarb plantation. Yield of field-grown plants was evaluated in the years 2007–2009. In the first year of cultivation in the nursery, plants propagated in vitro in the medium with the addition of kinetin at a concentration of 11.6 ȝmol dm-3 or 2iP at 12.3 ȝmol dm-3 developed crowns with the highest average weight of 1.48 and 1.05 kg, respectively. In the second year of cultivation in the nursery in the treatment with grown regulators applied, the average rhubarb crown weight ranged from 2.51 to 3.33 kg, while for the control treatment it was 1.78 kg. To characterize the population of in vitro plants, they were compared with plants obtained by division of the mother plant and from seeds. Plants propagated vegetatively from in vitro plantlets produced crowns with the highest average weight (0.83 kg), followed by those obtained from division of mother plants (0.79 kg), while plants produced from seeds had crowns with a much lower average weight (0.54 kg). In the second year of cultivation in the nursery, vegetatively and generatively propagated plants were characterized by a similar size and greater uniformity than in the first year. In the first year of planting (2007), petiole yield obtained from micropropagated plants was higher by 0.7 kg·plant-1 compared to generatively propagated plants, whereas in the second year of cultivation this difference was smaller and amounted to 0.6 kg· plant-1. In the third year of the plantation, plant productivity was more equal. During the study years, by far fewer leaves were harvested from generatively propagated plants compared to plants propagated vegetatively. In the second and third year of the plantation, intensive plant growth was observed; in effect, there were no significant relationships between petiole length and width and propagation method. The cultivation of vegetatively propagated plants gave the best effects in productivity; the average petiole yield was higher by 13.3 t·ha-1 in the case of micropropagation and by 16.0 t·ha-1 in the case of division of the mother plant compared to the yield obtained from rhubarb cultivation from seeds. Early yield at a level of 11.2 t·ha-1 was obtained from tissue cultured plants and its proportion accounted for 25% of total petiole yield.
PL
Badania dotyczyły różnych metod rozmnażania rabarbaru odmiany ‘Karpow Lipskiego’: wegetatywnie z kultur tkankowych oraz przez podział roślin matecznych i generatywnie z siewu nasion. Oceniano również przydatność materiału rozmnożeniowego do założenia plantacji rabarbaru. W celu wyprodukowania mikrosadzonek in vitro pędy wykładano na zmodyfikowaną pożywkę Murashige i Skooga zawierającą różne cytokininy: benzyloadeninę (BA – 4,4, 11,1, 22,2 μmol·dm-3), kinetynĊ (4,7, 11,6, 23,3 μmol·dm-3), izopentyloadeninę (2iP – 4,9, 12,3, 24,4 μmol·dm-3) oraz pożywkę kontrolną niezawierającą regulatorów wzrostu. Sadzonki otrzymano przez podział karp, a rozsadę z siewu nasion. W latach 2004–2006 rośliny otrzymane w wyniku rozmnażania wegetatywnego i generatywnego uprawiano w szkółce. Uzyskany materiał rozmnożeniowy wykorzystano do założenia plantacji rabarbaru. W latach 2007–2009 w uprawie polowej przeprowadzono ocenę plonowania. W pierwszym roku uprawy w szkółce karpy o największej średniej masie 1,48 i 1,05 kg wykształciły rośliny otrzymane in vitro z pożywki z dodatkiem kinetyny w stężeniu 11,6 ȝmol dm-3 oraz 2iP w stężeniu 12,3 ȝmol dm-3. W drugim roku uprawy w szkółce w przypadku zastosowanych fitohormonów średnia masa karpy rabarbaru zawierała się w przedziale od 2,51 do 3,33 kg, gdy z obiektu kontrolnego wynosiła 1,78 kg. Dla scharakteryzowania populacji roślin in vitro porównano je z roślinami otrzymanymi przez podział roślin matecznych i z nasion. Karpy o największej średniej masie wykształciwszy rośliny rozmnażane wegetatywnie: z mikrosadzonek (0,83 kg) i sadzonek uzyskanych przez podział roślin matecznych (0,79 kg), o zdecydowanie mniejszej średniej masie sadzonki otrzymane z nasion (0,54 kg). W drugim roku uprawy w szkółce rośliny otrzymane w wyniku rozmnażania wegetatywnego i generatywnego charakteryzowały się zbliżoną wielkością i większym wyrównaniem niż w pierwszym roku. W pierwszym roku prowadzenia uprawy (2007) większy plon ogonków liściowych o 0,7 kg·rośl.-1 zebrano z roślin otrzymanych z mikrosadzonek aniżeli z roślin rozmnażanych generatywnie, natomiast w drugim roku uprawy różnica ta była mniejsza i wynosiła 0,6 kg·rośl.-1. W trzecim roku prowadzenia plantacji plonowanie roślin było bardziej wyrównane. W latach prowadzenia badań z roślin rozmnażanych generatywnie zebrano zdecydowanie mniej liści w porównaniu z roślinami rozmnażanymi wegetatywnie. W drugim i trzecim roku prowadzenia plantacji obserwowano intensywny wzrost roślin, czego efektem był brak istotnych zależności pomiędzy długościową i szerokością ogonków liściowych a sposobem rozmnażania roślin. Najlepsze efekty plonowania dała uprawa roślin rozmnażanych wegetatywnie, z której plon średni ogonków liściowych był większy o 13,3 t·ha-1 w porównaniu z nieporozmnażaniem, oraz o 16,0 t·ha-1 przy podziale roślin matecznych w porównaniu z plonem uzyskanym w uprawie rabarbaru z nasion. Z uprawy roślin rozmnażanych za pomocą kultur tkankowych uzyskano plon wczesny na poziomie 11,2 t·ha-1, a jego udział stanowił 25% plonu ogółem ogonków liściowych.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

12

Numer

1

Opis fizyczny

p.115-128,fig.,ref.

Twórcy

autor
  • Department of Vegetables and Medicinal Plants, University of Life Sciences in Lublin, Leszczynskiego 58, 20-068 Lublin, Poland
autor
  • Department of Vegetables and Medicinal Plants, University of Life Sciences in Lublin, Leszczynskiego 58, 20-068 Lublin, Poland

Bibliografia

  • Barna K.S., Karihaloo J.L., Tiwari S., 2007. Long-term field performance of micropropagated Aloe vera plants. Plant Cell Biotech. Molecular Biol. 8 (3–4), 113–118.
  • Bhatia P., Ashwath N., 2004. Comparative performance of micropropagated and seed-grown tomato plants. Biol. Plant. 48, (4), 625–628.
  • Chavan-Patil V.B., Arekar C.D., Gaikwad D.K., 2010. Field performance of in vitro propagated banana plants from 8th and 15th subculture. Inter. J. Advan. Biotech. Res. 1 (2), 96–103.
  • Costa F.H.S., Pasqual M., Pereira J.E.S., de Castro E.M., 2009. Anatomical and physiological modifications of micropropagated ‘Caipira’ banana plants under natural light. Sci. Agric. 66 (3), 323–330.
  • Cristea T.O., Ambarus S., Stoian L., Falticeanu M., Calin M., 2009. Studies regarding the establishment of a viable micropropagation and acclimatization protocol for Brassica oleracea L. plants obtained from in vitro culture. Acta Hort. 812, 343–347.
  • Debnath S.C., 2009. Characteristics of strawberry plants propagated by in vitro bioreactor culture and ex vitro propagation method. Eng. Life Sci. 9 (3), 2–12.
  • Demeulemeester M.A.C., Proft M.P., 1999. In vivo and in vitro flowering response of chicory (Cichorium intybus L.): influence of plant age and vernalization. Plant Cell Reports, 18, 781–785.
  • Gantait S., Sinniah U.R., 2011. Morphology, flow cytometry and molecular assessment of exvitro grown micropropagated Anthurium in comparison with seed germinated plants. African J. Biotech. 10 (64), 13991–13998.
  • Jamieson A.R., Nickerson N.L., 2003. Field performance of the lowbush blueberry propagated by seed, stem cuttings and micropropagation. Acta Hort. 626, 423–428. Hazarika B.N., 2003. Acclimatization of tissue-cultured plants. Current Sci. 85 (12), 1704–1712.
  • Kadlecek P., Ticha I., Haisel D., Capkova V., Schäfer C., 2001. Importance of in vitro pretreatment for ex vitro acclimatization and growth. Plant Sci. 161, 695–701.
  • Kozak D., Sałata A., 2011. Effects of cytokinins on in vitro multiplication of rhubarb (Rheum rhaponticum L.) ‘Karpow Lipskiego’ shoot and ex vitro acclimatization and growth. Acta Sci. Pol., Hortorum Cultus, 10 (4), 75–87.
  • Lepse L., 2009. Comparison of in vitro and traditional propagation methods of rhubarb (Rheum rhaponticum) according to morphological features and yield. Acta Hort. 812, 265–269.
  • Lassus C., Voipio I., 1994. Micropropagation of rhubarb with special reference to weaning stage and subsequent growth. Agric. Sci. Finland, 3, 189–194.
  • Ma X., Gang D.R., 2006. Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale). Phytochem. 67, 2239–2255.
  • Maynard D.N., 1990. Evaluation of propagating stock and practices for annual rhubarb production. Hort. Sci. 25 (11), 1399–1401.
  • Mishra Y., Usmani G., Mandal A.K., 2010. In vitro cloning of Rauvolfia serpentina (L.) Benth. var. CIM-sheel and evaluation of its field performance. J. Biol. Res. 13, 85–92.
  • Misalova A., Durkovic J., Mamonova M., Priwitzer T., Lengyelova A., Hladka D., Lux A., 2009. Changes in leaf organization, photosynthetic performance and wood formation during ex vitro acclimatization of black mulberry (Morus nigra L.). Plant Biol. 11 (5), 686–693.
  • Mokotedi M.E.O., Watt M.P., Pammenter N.W., 2009. Analysis of differences in field performance of vegetatively and seed-propagated Eucalyptus varieties I: Survival and leaf gas exchange. South. Forests, 71 (4), 267–271.
  • Mokotedi M.E.O., Watt M.P., Pammenter N.W., 2010. Analysis of differences in field performance of vegetatively and seed-propagated Eucalyptus varieties II: Vertical uprooting resistance. South. Forests, 72 (1), 31–36.
  • Murashige T., Skoog S., 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15, 473–497.
  • Norman B., 1978. Forced rhubarb revival urged by Stockbridge House EHS. Grower, 89, 904–906.
  • Pospisilova J., Ticha I., Kadlecek P., Haisel D., Plzakova S., 1999. Acclimatization of micropropagated to ex vitro conditions. Biol. Plant. 42 (4), 481–497.
  • Roggemans J., Boxus P., 1988. Rhubarb (Rheum rhaponticum L.), 339–350. In: Y.P.S.
  • Baiaj (ed.), Biotech. in agric. and forest., vol. 6, Crop II, Springer-Verlag, Heidelberg. Roggemans J., Claes M.C, 1979. Rapid clonal propagation of rhubarb by in vitro culture of shoots tips. Sci. Hort. 11, 241–246.
  • Rumpunen K., Heneriksen K., 1999. Phytochemical and morphological characterization of seventy-one cultivars and selections of culinary rhubarb (Rheum spp.). J. Hort. Sci. Biotech. 74, 13–18.
  • Sandhu S.K., Gosal S.S., Thind K.S., Uppal S.K., Sharma B., Meeta M., Singh K., Cheema G.S., 2009. Field performance of micropropagated plants and potential of seed cane for stalk yield and quality in sugarcane. Sugar Tech. 11 (1), 34–38.
  • Sałata A., 2005. Earliness and field dynamics (Rheum rhaponticum L.) under conditional of Lubelszczyzna region. Latvian J. Agronomic. 8, LLU, 333–336.
  • Shahzad A., Faisal M., Anis M., 2007. Micropropagation through excised root culture of Clitoria ternatea and comparison between in vitro-regenerated plants and seedlings. Ann. Appl. Biol. 150 (3), 341–349.
  • Song J.Y., Sivanesan I., An C.G., Jeong B.R., 2009. Micropropagation of paprica (Capsicum annuum) and subsequent performance in greenhouse cultivation. J. Hort. Sci. Techn. 27 (2), 293–298.
  • Sood N., Gupta P.K., Srivastava R.K., Gosal S.S., 2006. Comparatives studies on field performance of micropropagated and conventionally propagated sugarcane plants. Plant Tiss. Cult. Biotech. 16 (1), 25–29.
  • de Souza A.L.K., Schuch M.W., Antunes L.E.C., Schmitz J.D., Pasa M.S., Camargo S.S., Carra B., 2011. Performance of blueberry seedlings by micropropagation or cutting. Pesq. Agropec. Bras., 46 (8), 868–874.
  • Zhao Y., Grout B.W.W., Crisp P., 2003. Inadvertent selection for unwanted morphological forms during micropropagation adversely affects field performance of European rhubarb (Rheum rhaponticum L.). Acta Hort. 616, 301–308.
  • Zhao Y., Grout B.W.W., Crisp P., 2004. Unexpected susceptibility of novel breeding lines of European rhubarb (Rheum rhaponticum L.) to leaf and petiole spot disease. Acta Hort. 637, 139–144.
  • Zhao Y., Grout B.W.W., Crisp P., 2005. Variation in morphology and disease susceptibility of micropropagated rhubarb (Rheum rhaponticum L.) PC49, compared to conventional plant. Plant Cell, Tiss. Organ Cult. 82, 357–361.
  • Zhao Y., Zhou Y., Grout B.W.W., 2006. Variation of leaf structures of micropropagated rhubarb (Rheum rhaponticum L.) PC49. Plant Cell, Tiss. Organ Cult. 85, 111–121.
  • Zhao Y., Grout B.W.W., Crisp P.C., 2009. Screening morphological variation in micropropagated plants of rhubarb (Rheum rhaponticum) derived from uniform, acclimated plantlets. Acta Hort. 812, 521–526.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5a3dc2f5-aae6-4f89-8722-e2710fdf55cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.