PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 09 |

Tytuł artykułu

Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of arbuscular mycorrhizal fungi (AMF) Rhizophagus irregularis on biomass, root morphological characteristics, water status, gas exchange and ion contents of Populus cathayana Rehder males and females under salt stress was studied in a greenhouse experiment. Sex had no influence on AMF colonization. Salt stress decreased the biomass, modified root characteristics, inhibited photosynthesis, relative water content (RWC), while increased the water use efficiency (WUEi), the ratio of root/shoot (RSR) and salt ion contents within the plants. Males and females differed in response to the salt stress and AMF inoculation. AMF inoculation increased the biomass of root, the biomass of shoot, and decreased RSR, especially in males. The root length, root volume (RV), root surface area, and root tip numbers (RTN) were increased with AMF inoculation in males, while RV and RTN were decreased with AMF inoculation in females. AMF had positive effects on RWC and WUEi in both sexes. Mycorrhizal cuttings also had higher gas exchange capacity, lower salt ion contents than non-mycorrhizal cuttings. The principal component analysis showed that males exhibited a better salt tolerance than females, and AMF inoculation had positive effects on both sexes, especially in males.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

09

Opis fizyczny

Article: 183 [14 p.], fig.,ref.

Twórcy

autor
  • College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
autor
  • College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
autor
  • College of Forestry, Northwest A and F University, Yangling, 712100, Shaanxi, China
autor
  • College of Forestry, Northwest A and F University, Yangling, 712100, Shaanxi, China

Bibliografia

  • Abassi M, Mguis K, Bejaoui Z, Albouchi A (2014) Morphogenetic responses of Populus alba L. under salt stress. J For Res 25:155–161. doi:10.1007/s11676-014-0441-6
  • Ali A, Arshad M, Naqvi SMS, Ahmad M, Sher H, Fatima S, Kazi AG, Rasheed A, Mujeeb-Kazi A (2014) Exploitation of syntheticderived wheats through osmotic stress responses for drought tolerance improvement. Acta Physiol Plant 36:2453–2465. doi:10.1007/s11738-014-1618-5
  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7. doi:10.1016/j.scienta.2006.02.019
  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297. doi:10.2136/vzj2006.0068
  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57.doi:10.1093/jxb/err266
  • Ashraf MY, Akhtar K, Satwar G, Ashraf M (2005) Role of the rooting system in salt tolerance potential of different guar accessions. Agron Sustain Dev 25:243–249. doi:10.1051/agro:2005019
  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017. doi:10.1093/aob/mcs007
  • Bertrand A, Dhont C, Bipfubusa M, Chalifour FP, Drouin P, Beauchamp CJ (2015) Improving salt stress response of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl Soil Ecol 87:108–117. doi:10.1016/j.apsoil.2014.11.008
  • Bolandnazar S, Aliasgarzad N, Neishabury MR, Chaparzadeh N (2007) Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci Hortic 114:11–15. doi:10.1016/j.scienta.2007.05.012
  • Bressano M, Curetti M, Giacheroa L, Gil SV, Cabello M, March G, Ducasse DA, Luna CM (2010) Mycorrhizal fungi symbiosis as a strategy against oxidative stress in soybean plants. J Plant Physiol 167:1622–1626. doi:10.1016/j.jplph.2010.06.024
  • Campanelli A, Ruta C, De Mastro G, Morone-Fortunato I (2013) The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis 59:65–76. doi:10.1007/s13199-012-0191-1
  • Chatzistathis T, Orfanoudakis M, Alifragis D, Therios I (2013) Colonization of Greek olive cultivars’ root system by arbuscular mycorrhiza fungus: root morphology, growth, and mineral nutrition of olive plants. Sci Agr 70:185–194. doi:10.1590/S0103-90162013000300007
  • Chaves MM, Flexas J, Pinheiro C (2009) Phototsynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125
  • Chen S, Li J, Wang S, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees Struct Funct 15:186–194. doi:10.1007/s004680100091
  • Chen FG, Chen LH, Zhao HX, Korpelainen H, Li CY (2010a) Sexspecific responses and tolerance of Populus cathayana to salinity. Physiol Plant 140:163–173. doi:10.1111/j.1399-3054. 2010.01393.x
  • Chen LH, Zhang S, Zhao HX, Korpelainen H, Li CY (2010b) Sexrelated adaptive responses to interaction of drought and salinity in Populus yunnanensis. Plant Cell Environ 33:1767–1778. doi:10.1111/j.1365-3040.2010.02182.x
  • Chen SL, Hawighorst P, Sun J, Polle A (2014) Salt tolerance in Populus: significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environ Exp Bot 107:113–124. doi:10.1016/j.envexpbot.2014.06.001
  • Contreras-Cornejo HA, Macias-Rodriguez L, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma spp. Improve growth of Arabidopsis seedings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant Microbe In 27:503–514. doi:10.1094/MPMI-09-13-0265-R
  • Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, London, pp 278–309
  • Ellouzi H, Ben Hamed K, Hernandez I, Cela J, Muller M, Magne C, Abdelly C, Munne-Bosch S (2014) A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240:1299–1317. doi:10.1007/s00425-014-2154-7
  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280. doi:10.1093/aob/mcp251
  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50. doi:10.1016/S0098-8472(01)00109-5
  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscularmycorrhizal infection in roots.New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x
  • Gong MG, Tang M, Chen H, Zhang QM, Feng XX (2013) Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New For 44:399–408. doi:10.1007/s11056-012-9349-1
  • Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Prommier T, Schloter M, Tappeiner U, Bahn M, Clement JC (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57. doi:10.1111/1365-2745.12014
  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327. doi:10.1007/s11104-009-0255-z
  • Han Y, Wang Y, Jiang H, Wang M, Korpelainen H, Li CY (2013) Reciprocal grafting separates the roles of the root and shoot in sex-related drought responses in Populus cathayana males and females. Plant Cell Environ 36:356–364. doi:10.1111/j.1365-3040.2012.02578.x
  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53. doi:10.1007/s00248-007-9249-7
  • Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, Rennenberg H, Fromm J, Polle A (2012) Salt stress induces the formation of a novel type of ‘pressure wood’ in two Populus species. New Phytol 194:129–141. doi:10.1111/j.1469-8137.2011.03975.x
  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239. doi:10.1016/j.scienta.2008.02.002
  • Kumar A, Sharma S, Mishra S (2010) Influence of Arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas
  • L. J Plant Growth Regul 29:297–306. doi:10.1007/s00344-009-9136-1
  • Li JG, Pu LJ, Han MF, Zhu M, Zhang RS, Xiang YZ (2014) Soil salinization research in China: advances and prospects. J Geogr Sci 24:943–960. doi:10.1007/s11442-014-1130-2
  • Liu T, Wang CY, Chen H, Fang FR, Zhu XQ, Tang M (2014) Effects of arbuscular mycorhizal colonization on the biomass and bioenergy production of Populus 9 Canadensis ‘Neva’ in sterilized and unsterilized soil. Acta Physiol Plant 36:871–880. doi:10.1007/s11738-013-1465-9
  • Ma XJ, Sun M, Sa G, Zhang YH, Li J, Sun J, Shen X, Polle A, Chen SL (2014) Ion fluxes in Paxillus involutus-inoculated roots of Populus 9 canescens under saline stress. Environ Exp Bot 108:99–108. doi:10.1016/j.envexpbot.2013.11.016
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001. 00808.x
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Peng Y, Zhu Y, Mao Y, Wang S, Su W, Tang Z (2004) Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. J Exp Bot 55:939–949. doi:10.1093/jxb/erh071
  • Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusia J, Garbulsky M, Filella I, Jump AS (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chang Biol 19:2303–2338. doi:10.1111/gcb.12143
  • Phillips J, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–161. doi:10.1016/S0007-1536(70)80110-3
  • Pitman M, Läuchli A (2004) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge S (eds) Salinity: environment–plants–molecules. Springer, Dordrecht, pp 3–20
  • Porcel R, Aroca R, Ruı´z-Lozano JM (2012) Salinity stress alleviation using Arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200. doi:10.1007/s13593-011-0029-x
  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive tree under nursery conditions. J Plant Physiol 166:1350–1359. doi:10.1016/j.jplph. 2009.02.010
  • Ramos-Zapata J, Orellana R, Guadarrama P, Medina-Peralta S (2009) Contribution of mycorrhizae to early growth and phosphorus uptake by a Neotropical palm. J Plant Nutr 32:855–866. doi:10. 1080/01904160902790333
  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050. doi:10.1007/s11738-012-1142-4
  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80. doi:10.1007/s005720000061
  • Ren J, Dai WR, Xuan ZY, Yao YN, Korpelainen H, Li CY (2007) The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. For Ecol Manag 239:112–119. doi:10.1016/j.foreco.2006.11.014
  • Sgrott AF, Booz MR, Pescador R, Heck TC, Stürmer SL (2012) Arbuscular mycorrhizal inoculation increase biomass of Euterpe edulis and Archontophoenix alexandrae after two years under field conditions. Rev Bras Cieˆnc Solo 36:1103–1112. doi:10.1590/S0100-06832012000400005
  • Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296.doi:10.1007/s00572-008-0180-7
  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2009) Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can J Microbiol 55:879–886. doi:10.1139/w09-031
  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London
  • Song YP, Ma KF, Ci D, Zhang ZY, Zhang DQ (2014) Biochemical, physiological and gene expression analysis reveals sex-specific differences in Populus tomentosa floral development. Physiol Plant 150:18–31. doi:10.1111/ppl.12078
  • Tian YH, Lei YB, Zheng YL, Cai ZQ (2013) Synergistic effect of colonization with arbuscular mycorrhizal fungi improves growth and drought tolerance of Plukenetia volubilis cuttings. Acta Physiol Plant 35:687–696. doi:10.1007/s11738-012-1109-5
  • Vicente-Sanchez J, Nicolas E, Pedrero F, Alarcon JJ, Maestre-Valero JF, Fernandez F (2014) Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24:339–348. doi:10.1007/s00572-013-0542-7
  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5
  • Wang J, Huang Y, Jiang XY (2011) Influence of ectomycorrhizal fungi on absorption and balance of essential elements of Pinus tabulaeformis seedlings in saline soil. Pedosphere 21:400–406.doi:10.1016/S1002-0160(11)60141-0
  • Xu X, Yang F, Xiao XW, Zhang S, Korpelainen H, Li CY (2008) Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant Cell Environ 31:850–860. doi:10.1111/j.1365-3040.2008.01799.x
  • Yang F, Xiao X, Zhang S, Korpelainen H, Li CY (2009) Salt stress response in Populus cathayana Rehder. Plant Sci 176:669–677.doi:10.1016/j.plantsci.2009.02.008
  • Yang YR, Tang M, Sulpice R, Chen H, Tian S, Ban YH (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristic of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul 33:612–625. doi:10.1007/s00344-013-9410-0
  • Yin CY, Duan BL, Wang X, Li CY (2004) Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Sci 167:1091–1097. doi:10.1016/j.plantsci.2004.06.005
  • Zhang Q, Zhang L, Weiner J, Tang J, Chen X (2011a) Arbuscular mycorrhizal fungi alter plant allometry and biomass-density relationships. Ann Bot 107:407–413. doi:10.1093/aob/mcq249
  • Zhang S, Jiang H, Peng SM, Korpelainen H, Li CY (2011b) Sexrelated differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J Exp Bot 62:675–686. doi:10.1093/jxb/erq306
  • Zhang S, Chen LH, Duan B, Korpelainen H, Li CY (2012) Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress. For Ecol Manag 275:68–78.doi:10.1016/j.foreco.2012.03.014
  • Zhang BB, Liu WZ, Chang SX, Anyia AO (2013) Phosphorus fertilization and fungal inoculations affected the physiology, phosphorus uptake and growth of spring wheat under rained conditions on the Canadian Prairies. J Agron Crop Sci 199:85–93. doi:10.1111/jac.12001
  • Zhao H, Li Y, Zhang X, Korpelainen H, Li CY (2012) Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature. Tree Physiol 32:1325–1338. doi:10.1093/treephys/tps074

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5a20f397-4fe5-4e2c-a0aa-e685f80b65e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.