PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 68 | 02 |
Tytuł artykułu

Morphometrical analysis of neurons of corpus amygdaloideum's nucleus amygdaloideum lateralis in domestic pig

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to conduct morphometrical analysis during the process of maturation of nucleus amygdaloideum lateralis. The brain of domestic pigs of both sexes (taken during the following period of their life: from 7th to 15th week of intrauterine life, newborn animals, one-month and one-year-old animals) were used as the material for the examination. The brains were removed and processed conventionally by microscope. The preparations were colored according to Klüvera-Barrer’s method and according to Nissel. Histological preparations obtained in this way were used for morphometrical analysis of the neurons of the corpus amygdaloideum’s nucleus amygdaloideum lateralis. Morphometrical examinations were carried out by the Nikon Eclipse E-600 microscope compressed with a JVC TK-1380-E camera and a computer using morphometrical MULTI-SCAN-BASE 08.98 program. The examination comprised the following parameters: the section area of nervous cells and the area of cell nucleus in µm²; the nucleo-cellar rate in %; the average diameter of nervous cell in µm; the volume of nervous cells in µm³; the number of neurons per 1 mm²; the number of neurons per 1 mm³. Morphometrical observation showed that in the 9th week of fetal life the cells forming the primary corpus amygdaloideum are of identical shape and size. The size of cell area of this period of fetal life fluctuates around 45 µm². In the 11th week of fetal life cells of the nucleus amygdaloideum lateralis are densely arranged, they have oval or polyhedral shape and contain a small amount of cytoplasm pretty evenly stained, in which Nissel’s granules are visible. In the 12th week of a domestic pig’s life cells of the nucleus amygdaloideum lateralis have a polyhedral, oval or pyramidal shape. In the subsequent periods of fetal life and new born animals, the appearance of cells composing the nucleus amygdaloideum laterais does not significantly change. In case of nucleus amygdaloideum lateralis nucleo-cellular rate fluctuates between 51 and 60%. The value of this rate decreases during development and maturation of neurons. On the basis of the examined morphometrical parameters the author claims that the neurons attain morphological maturity at the end of fetal life.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
68
Numer
02
Opis fizyczny
p.102-105,fig.,ref.
Twórcy
  • Department of Animal Anatomy and Histology, SubDepartment of Animal Anatomy, University of Life Sciences in Lublin, ul. Akademicka 12, 20-950 Lublin
Bibliografia
  • 1. Aggeleton J. P.: A description of intra-amygdaloid connections in old world monkey. Exp. Brain Res. 1985, 57, 390-399.
  • 2. Aggeleton J. P.: A description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp. Brain Res. 1986, 64, 515-526.
  • 3. Aggeleton J. P., Burton M. J., Passingham R. E. C.: Cortical and subcortical afferents to the amygdala of the rhesus moneky (Macaca Mulatta). Brain Res. 1980, 190, 247-368.
  • 4. Amaral D. G.: Amygdalohippocampal and amygdalocortical projections in the primate brain. Adv. Exp. Med. Biol. 1986, 203, 3-17.
  • 5. Carlsen J.: New perspectives on the functional anatomical organization of the basolateral amygdala. Acta Neurol. Scand Suppl. 1989, 122, 1-27.
  • 6. Eustachiewicz R.: Budowa i topografia ciała migdałowatego (corpus amygdaloideum) u krowy. Annales UMCS Sectio DD. 1999, 54, 131.
  • 7. Humphrey T.: The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fiber connections. J. Comp. Neurol. 1936, 65, 603-711.
  • 8. Iwai E., Yukie M.: Amygdalogugal and amygdalopetal connections with modality-specyfic visual cortical areas in macaques (Macaca fuscata, M. mulatta, M. fascicularis). J. Comp. Neurol. 1987, 261, 362-387.
  • 9. Johnson L. R., Aylward R. L. M., Hussain Z.: Input from the amygdala to the rat nucleus accumbens: Its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 1994, 61, 851-865.
  • 10. Johnston J. B.: Further contributions to the study of the evolution of the forebrain. J. Comp. Neurol. 1923, 35, 337-481.
  • 11. Krettek J., Price J. L.: Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J. Comp. Neurol. 1978, 178, 255-254.
  • 12. Llamas A., Avendano C., Reinoso-Suarez F.: Amygdaloid projections to the motor, premotor and prefrontal areas of the cat’s cerebral cortex: A topographical study using retrograde transport of horseradish peroxidase. Neuroscience 1985, 15, 651-657.
  • 13. Lonc G., Krakowska I.: Structures and topography of the amygdala of female chinchilla. Medycyna Wet. 2009, 65, 498-502.
  • 14. Łuszczewska-Sierakowska I.: Analiza morfometryczna neuronów jądra podstawno-bocznego ciała migdałowatego świni domowej. Medycyna Wet. 2006, 62, 170-173.
  • 15. Mascagni F., McDonald A. J., Coleman J. R.: Corticoamygdaloid and corticocortical projections of the rat temporal cortex: A phaseolus vulgaris leucoagglutinin study. Neuroscience 1993, 57, 697-715.
  • 16. Millhouse O. E., De Olmos J.: Neuronal configurations in lateral and basolateral amygdala. Neuroscience. 1983, 10, 1269-1300.
  • 17. Mufson E. J., Mesulam M., Pandya D. N.: Insular interconnections with the amygdala in the rhesus monkey. Neuroscience 1981, 6, 1231-1248.
  • 18. Ricardo J. A., Tongju Koh E.: Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 1978, 153, 1-26.
  • 19. Russchen P. A.: Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques. J. Comp. Neurol. 1982, 206, 159-179.
  • 20. Ottersen O. P.: Conections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studies with axonal transport of horseradish peroxidase. J. Comp. Neurol. 1982, 205, 30-48.
  • 21. Sarter M., Markowitsch H. J.: Convergence of basolateral amygdaloid and mediodorsal thalamic projections in different areas of the frontal cortex in the rat. Brain Res. Bull. 1983, 10, 607-622.
  • 22. Turner B. H., Zimmer J.: The architecture and some of the interconnections of the rat's amygdala and lateral periallocortex. J. Comp. Neurol, 1984, 227, 540-557.
  • 23. Vankova M., Arluison M., Leviel V.: Afferent connections of the rat substantia nigra pars lateralis with special reference to peptide-containing neurons of the amygdalo-nigral pathway. J. Chem. Neuroanat. 1992, 5, 39-50.
  • 24. Wakefield C.: The topographical organization and laminar origin of some cortico-amygdaloid connections. Neurosci. Lett. 1980 20, 21-24.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-5a0e1494-7815-4501-9dfd-afdafaf113e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.