PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 163 | 11 |

Tytuł artykułu

Allele rzadkie i prywatne jako miara bogactwa puli genetycznej materiału sadzeniowego sosny zwyczajnej

Treść / Zawartość

Warianty tytułu

EN
Rare and private alleles as a measure of gene pool richness in Scots pine planting material

Języki publikacji

PL

Abstrakty

EN
In forestry management, artificially produced planting material is mainly used for renewal the tree population. Seedlings are cultivated in two systems: in the ground (the bare−root seedlings) and in controlled conditions (container seedlings). The aim of the study was to analyse the microsatellite markers of nuclear and chloroplast DNA, in terms of the number and frequency of rare, private, low frequency and common alleles in the planting material of Scots pine. The rare alleles included alleles occurring with less than 1% in analyzed group of seedlings and low frequency alleles occurred with a frequency of less than 25%. The private alleles were detected only in one group of seedlings. Genetic pools of seedlings from traditional (soil) and container production were compared. Planting material came from nurseries in the Olsztynek (N Poland) and the Oleszyce (S Poland) forest district. With the similar number of observed nDNA and cpDNA alleles in both analyzed locations, a higher number of rare, low frequency and private alleles was found within container seedlings. Most private alleles were a rare allele. Rare and private alleles are supposed to be responsible for adaptation to changing climatic conditions and a stressful environment. It seems reasonable to continue research on the meaning of rare and private alleles under conditions of strong selective pressure.

Wydawca

-

Czasopismo

Rocznik

Tom

163

Numer

11

Opis fizyczny

s.948-956,rys.,tab.,bibliogr.

Twórcy

autor
  • Katedra Hodowli Lasu, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Zakład Ekologii Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Wydział Biologii i Nauk o Środowisku, Uniwersytet Kardynała Stefana Wyszyńskiego, ul.Wóycickiego 1/3, 01-938 Warszawa

Bibliografia

  • Adams W. T., Zuo J., Shimizu J. Y., Tappeiner J. C. 1998. Impact of alternative regeneration methods on genetic diversity in coastal Douglas-fir. Forest Science 44 (3): 390-396.
  • Barrett S. C., Kohn J. R. 1991. Genetic and evolutionary consequences of small population size in plants: implications for conservation. W: Falk D. A., Holsinger K. E. [red.]. Genetics and Conservation of Rare Plants. Oxford University Press, New York. 3-30.
  • Bergmann F., Scholz F. 1987. The impact of air pollution on the genetic structure of Norway spruce. Silvae Genetica 36: 80-83.
  • Buchert G. P., Rajora O. P., Hood J. V., Dancik B. P. 1997. Effects of harvesting on genetic diversity in old-growth eastern white pine in Ontario, Canada. Conservation Biology 11 (3): 747-758.
  • Bush R. M., Smouse P. E. 1991. The impact of electrophoretic on life history traits in Pinus taeda. Evolution 45: 481-498.
  • Bush R. M., Smouse P. E. 1992. Evidence for the adaptive significance of allozymes in forest trees. New Forests 6: 179-196.
  • Chagné D., Chaumeil P., Ramboer A., Collada C., Guevara A., Cervera M. T., Vendramin G. G., Garcia V., Frigerio J.-M., Echt C., Richardson T., Plomion C. 2004. Cross species transferability and mapping of genomic and cDNA SSRs in pines. Theoretical and Applied Genetics 109: 1204-1214.
  • Cheliak W. M., Murray G., Pitel J. A. 1988. Genetic effects of phenotypic selection in white spruce. Forest Ecology and Management 24: 139-149.
  • Cheng Z. M., Shi N. Q., Herman D. E., Capps T. K. 1997. Building in resistance to Dutch elm disease. Journal of Forestry 95: 24-27.
  • Danusevicius D., Kerpauskaite V., Kavaliauskas D., Fussi B., Konnert M., Baliuckas V. 2016. The effect of tending and commercial thinning on the genetic diversity of Scots pine stands. European Journal of Forest Research 135: 1159-1174.
  • García-Gil M. R., Floran V., Östlund L., Mullin T. J., Gull B. A. 2015. Genetic diversity and inbreeding in natural and manager populations of Scots pine. Tree Genetics and Genomes 11: 28.
  • Konecka A., Brzeziecki B., Bielak K., Tereba A., Bieniek J., Nowakowska J. A. 2018. Wpływ metod trzebieży na strukturę i zróżnicowanie genetyczne drzewostanów sosnowych na poziomie analiz DNA. Dokumentacja końcowa tematu nr 241403. Instytut Badawczy Leśnictwa, Sękocin Stary.
  • Konecka A., Tereba A., Bieniek J., Nowakowska J. A. 2018. Porównanie zmienności genetycznej pokolenia matecznego i sztucznie wyhodowanego potomstwa sosny zwyczajnej na podstawie analiz DNA. Sylwan 162 (1): 32-40. DOI: https://doi.org/10.26202/sylwan.2017092.
  • Kosińska J., Lewandowski A., Chalupka W. 2007. Genetic variability of Scots pine maternal populations and their progenies. Silva Fennica 41: 5-12.
  • Müller-Starck G. 1985. Genetic differences between ‘tolerant’ and ‘sensitive’ beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silvae Genetica 34: 241-247.
  • Oddou-Muratorio S., Houot M. L., Demesure-Musch B., Austerlitz F. 2003. Pollen flow on the wild service tree Sorbus torminalis (L.) Crantz. I. Evaluating the paternity analysis procedure in continuous populations. Molecular Ecology 12 (12): 3427-3439.
  • Peakall R., Smouse P. E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28 (19): 2537-2539.
  • Provan J., Soranzo N., Wilson N. J., McNicol J. W., Forrest G. I., Cottrell J., Powell W. 1998. Gene-pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats. Proceedings. Biological sciences. The Royal Society. London. B 265: 1697-1705.
  • Raja R. G., Tauer C. G., Wittwer R. F., Huang Y. 1998. Regeneration methods affect genetic variation and structure in shortleaf pine (Pinus echinata Mill.). Forest Genetics 5 (3): 171-178.
  • Rajora O. P. 1999. Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce. Theoretical and Applied Genetics 99: 954-961.
  • Rajora O. P., DeVerno L., Mosseler A., Innes D. 1998. Genetic diversity and population structure of disjunct Newfoundland and central Ontario populations of eastern white pine (Pinus strobus L.). Canadian Journal of Botany 76: 500-508.
  • Rajora O. P., Rahman M. H., Buchert G. P., Dancik B. P. 2000. Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario. Molecular Ecology 9: 339-348.
  • Robledo-Arnuncio J. J., Smouse P. E., Gil L., Alía R. 2004. Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. Forest Ecology and Management 197: 245-255.
  • Scalfi M., Piotti A., Rossi M., Piovani P. 2009. Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: the rear edge of the range. European Journal of Forest Research 128 (4): 377.
  • Soranzo N., Provan J., Powell W. 1998. Characterization of microsatellite loci in Pinus sylvestris L. Molecular Ecology 7: 1260-1261.
  • Williams C. 1999. The peculiarities of pine genome. Plant and Animal Genome VII Conference. January 17-21. San Diego, California.
  • Zhong C., Kolb T. E., Clancey K. M., Hipkins V. D., DeWald L. E. 2001. Allozyme variation in interior Douglas-fir: association with growth and resistance to western spruce budworm herbivory. Canadian Journal of Forest Research 31: 1691-1700.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-59e92adb-97b5-4ef0-b76a-7cb4f2d591ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.