In this paper, we found new exact solutions to the Einstein-Maxwell system of equations with charged anisotropic matter distribution considering quadraticequation of state. We specify the gravitational potential Z(x) that depends of a adjustable parameter n and that allow integrate analytical the field equationsin order tocalculate the energy density, the radial pressure, the anisotropy, charge density and the mass functionfor differentvalues of n. The obtained solutions can be written in terms of elementary and polynomial functions
Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela
Bibliografia
[1] Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor.Phys., 5, 365-367.
[2] Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics., 2, 165-173.
[3] Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
[4] Komathiraj K., and Maharaj S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel.Grav.39, 2079-2093.
[5] Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class of static charged stars, Gen.Rel. Grav.33, 999-110.
[6] Schwarzschild, K.(1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit, Math.Phys.Tech, 424-434.
[7] Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev.55, 364-373.
[8] Oppenheimer, J.R. and Volkoff, G. (1939). On massive neutron cores, Phys. Rev.55, 374-381.
[9] Chandrasekhar, S. (1931). Mass of Ideal White Dwarfs, Astrophys. J., 74, 81-82.
[10] Baade, W., and Zwicky, F. (1934). Cosmic Rays from Super-Novae,Proc. Nat.Acad.Sci.U.S.,20,259-263.
[11] Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quarkstars,Int.J.Mod. Phys.D16, pp. 1803-1811.
[12] Bowers, R. L., Liang, E. P. T. Astrophys. J.188, 657 (1974).
[13] Cosenza, M., Herrera, L., Esculpi, M. and Witten, L. (1981).J. Math. Phys.22 (1), 118.
[14] Gokhroo, M. K., and Mehra. A. L. (1994). Anisotropic spheres with variable energy density in general relativity.Gen. Relat.Grav.26 (1), 75-84.
[15] Sokolov. A. I. (1980), Sov. Phys. JETP., 52, 575.
[16] Usov, V. V. Phys. Rev. D, 70, 0673
[17] Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133.
[18] Malaver, M.(2014).Some news models for strange quark stars with isotropic pressure,AASCIT Communications, 1,48-51.
[19] Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity., 25, 235001.
[20] Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J.Plus., 129, 3.
[21] Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model, PRAMANA-Journal of physics., 81(2), 275-286.
[23] Feroze T. and SiddiquiA. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035.
[24] Feroze, T,. and Siddiqui, A. (2014). Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society., 65(6), 944-947.
[25] Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications.,1(1), 9-15.
[26] Malaver, M.(2015). Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application.,2(1), 1-6.
[27] Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel.Grav., 45, 1951-1969.
[28] Thirukkanesh S.andRagelF.C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics,78(5), 687-696.
[29] Malaver, M. (2013). Regular model for a quark starwith Van der Waals modified equation of state, World Applied Programming,3, 309-313.
[30] Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal ofAstronomy and Astrophysics., 1(4), 41-46.
[31] Raghoonundun, A. and Hobill, D. (2015). Possiblephysical realizations of the Tolman VII solution, Physical ReviewD 92, 124005.
[32] Durgapal, M.C.and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys.Rev.,D27, 328-331.
[33] Bibi, R., Feroze, T. and Siddiqui, A. (2016). Solution of the Einstein-Maxwell equations with anisotropic negative pressure as a potential model of a dark energy star, Canadian Journal of Physics, 94(8), 758-762.
Uwagi
EN
1st INTERNATIONAL SCIENTIFIC CONFERENCE, dilemmas of scientific research in various fields of science: natural sciences, science and technology, economic and social sciences, humanistic sciences, 10th October, 2016, Cracow, Poland