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Janusz Haman, Andrzej Marciniak, Zbigniew Siarkowski 

In scientific considerations of the structure of mechanisms affecting 

the processed medium almost always there is the necessity of describing 

this medium in a way appropriate to the description of the mechanism 

itself. Tasks of this type were posed for solving for a long time. Parti- 

cularly widely was this range of problems dealt with in soil investigations. 

Also a similar problem range is connected with the consideration of the 

working processes of agricultural machines. A working process of machine 

consists of a series of elementary operations, each of which is realized 

in a different dynamic system. To gest to know the whole process it is 

necessary to analyze all the subsequent situations the processes medium 

enters. 

Since rheology is a science dealing with media in such a way that 

it tries to answer the question of what the deformations and strains are 

in a given point of the investigated body at a certain moment at known 

parameters of externam influences and a known history of influences 

occured earlier, therefore its task is to provide an answer to the ques- 

tion of the physical nature of the medium is. Analizing more 

closely the above formulation we conclude that since the medium which 

is processed creates it history by passing through successive stages in 

which it changes its properties, would it not be of advantage to consider 

the successive stages separately. 

Considering the behaviour of the mass of cereals and other plants, 

that form jointly a corn-field, in a working process during harvesting, 

we deal with two closely related questions — a mechanical and a rheologi- 

cal ones. The movement of cereal mass in a cereal combined harvester 

is described as a system of transfers of the subsequent points the mass 

in relation to the mechanisms of the machine, which constitutes the 

* Part to provide an answer to the question of the physical nature of the 

work will comprise numerical calculations and will be published in 1979. 
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mechanical question of the problem. For the rheological part of the 

problem this movements is determined by the initial and boundary condi- 

tions. From the point of view of mechanics the rheological problem will 

consist in the description of the movement of the points of the mass in 

relation to one another. Thus the solving of the rheological problem is 

not possible without the prior solving of the mechanics of movement. 

The above presented thesis of the consideration of partial causes and 

effects is from the mathematical point of view simpler than a global 

solution. Besides, it seems little probable that it is possible to build 

a physically realizable mathematical model of cereal mass, at the same 

time true for such systems as ex. the harvesting, threshing, and cleaning 

systems of a harvester. As is known from literature, media that are 

simpler from the mass in question are not well describable mathematically 

in the sense of rheology. And if we consider that the change speeds of 

external forcings were low for these media, we have an almost complete 

set of arguments for, let us call it, the individual, from the point of view 

of the forcing system, approach to the description of the medium. 

Very popular is the making of a description of a body with the help 

of model analogies and structural models. Ex. a model analogy will be 

the known in physics soap-bubble of Prandtl or the ideally inflexible 

homogeneous steel ball. A model analogy can also be manifested in 

another way, ex. at the building of a diagram of the medium on the 

bassis of mathematical equations of known phenomena. A structural 

model is a combination of such components as elements presenting visco- 

sity, elasticity, plasticity. | 

It should be point out here that simple relationships between these 

elements concern only homogeneous bodies. And so is someone says that 

a grain of wheat can be described by a structural model equivalent ex. 

to the model of Bingham, the recipient of this information will under- 

stand that it is a homogeneous body. But this is not so. However, it may 

be true to say that the Bingham model can be used to approximating the 

description of the body in question. The difference between the two 

statements is considerable and for its filling we should turn to the 

methods of micro-rheology. 

Micro-rheology, dealing with bodies with a structure, has two basic 

methods: structural analysis, and structural theory. The first concerns 

experimental analysis, and this serves to form an appropriate hypothesis, 

which is then justified in the structural theory. This theory assumes 

a certain summing up of the properties of the component elements. 

Thus we should build a theoretical structural model the components 

of which would be theoretical bodies, i.e. at least quasi-homogeneous. 

It seems, that because of the inaccessibility of the methods of structural
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analysis a grain can be, at the most, approximated with a mono structural 

model, while cereal mass could be described on the basis of the structural 

theory, that is basing on equations of mathematical physics. This follows 

from the fact that cereal mass has a large number of components, 

each of which can be described by a mono structural model. A mono 

model will in this case be a theoretical body. This then constitutes 

a bridge between a poly structural model and the structural theory 

(ex. a hydrodynamic one considering cracks). The accuracy of the 

description depends in this situation on the technological requirements. 

If then it is possible to utilize the apparatus of physical equations, 

then, because of the probabilistic character of the medium, it is possible 

to utilize the methods of object identification. 

At present the situation in rheology is still similar to that of Mende- 

lejev during building his periodic table of elements. He provided empty 

spaces for undiscovered elements. The table of rheological bodies is filled 

at its ends with classical bodies, towards the centre with theoretical 

bodies, and the very centre is a blank space. This is the space for physi- 

cal media. Identification must then consist in the finding of an appro- 
priate space for a given medium in the table. The methods of identifica- 

tion allow for the determination of two things: the structure, and the 
random interferance of the picture of this structure. It is wort noticing 

that this second component is often interpreted as a random margin, 

an unknown element. 

Below we present a sketch of a probabilistic method based on the 
structural theory. Here the Wiener’s theory of the “fourth box” is 
applied. 

y = Kz 
where: 

K — opertator dependent from time, 

х — vector of coercion, 

y — vector of the reaction of material. 

The operator K must meet the following conditions 

1) linearity — K(a,%, + a9%2) = a, Kx, +a,Kx, 

where: 

Qi, Qą — arbitrary values, 

2) implication — [y(t) 0 At co] => [x(t)—0] 

3) relation between the operator K and the function of transfer $(w) 

K(é@) = &(w) Ie 
where: 

I — unit vector, 

@(w) — matrix of the components ¢j,(@). 

11*
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u l oe 
Ен = a I | фе; (©) е'2° а», (2) 

Ky (¢) — 0, e =. 0, 

Ki f= J kit — Of dr, t> 0 (3) 

The operator K is a matrix of the components k;; presented by the 

convolution (3) where k,; are Fourier's transforms (2) of the components 

of the matrix of function of transfer. The functions k,, are of the class 

of generalized functions. The transfer function (transmittance of system) 

has the form | 

. P,,(i@) 
Ф (16) = Ba) (4) 

where: 

P and Q are polynominals of the m and n degrees in effect of 

substituting the operators of differentiating of the right (x) and left 

(y) sides of differential equation respectively with iw (Laplace’s trans- 

formations). | 

The expression KI occuring in the third condition is the reaction of 

the system to Dirac’s impuls and the transfer function describes the 

reaction of the medium to sinusoidal coercion. | 

The determination of the operator K is made with the help of La- 

places transformations of the functions x and y. The functions are 

obtained in m successive experiments. 

Expanding the third condition we obtain the formal relations 

determining the operator K. 

Ly;(z) = Lk;(z) Lzj(z) (5) 

where: 

L — Laplace's transformation, 

z — complex variable, 

j — 1,2,.., m number of experiments. 

Ly;(2) = lILyv(z)| (matrix from terms of particular realizations for 

=1,2,... i degrees of freedom) | 

сэ 

вуз (=) = J yy (ce ** de, 
о
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ax;(2) = || ax;(z)||, 

OX; (5) == Г X(T) get at > 

ak;(z) = || ak,;(2) ||, 

ax; (2) = | ky(a)e 37 dr, 

ax; and ay;— vectors. 

Thus the relation (5) presents a matrix of nam unknown values Lk;;(z) 
determined by the values Laj;(z) and Lyi(z). Applying now to Lky(z) 
the reverse transformations of Laplace we obtain K;;(z). The presented 

method can be applied for non-stationary systems. 

If the object is stationary the formalism is simplified to 

Fy) = P(o)Fz;(o) (6) 

where: F — Fourier’s transform 

\ 

Fy;(@) = || Fyz(o) ||; 

<> 

Fy;(o)= Г ет а, 

Ех; (©) = || Ехь (6) ||, 

Fx;(0) = Г ху (т) ет т. 

From m experiments we find the sought nuclei (0) (2), Пт =п=1 

then it is particularly worthwhile to consider two cases 

Kis (O = an0™ (€), n= 0,1,...,/, (7) 

Ku (6) = aó(6) + kn (8), (8) 

where: 

509(5) — n-th derivative of delta function, 

Ady — constants, 

ko,,(5) — function of limited oscillation. 

The first case is reduced to the equation
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d! x 1х. | 
J4 = gg + аа +... PF doży (9) 

The second case gives 

Ją = 090 + | Ky (t — 5х, (т) 41. (10) 

This case, determining the relation of ex. strain (o), deformation (e), is 

reduced to the finding fo the nucleus k;,(6) or the corresponding spectral 

density 71,(w). 

The relation (10) allows for the utilization of the information theory 

in the identification of a body, and k,, plays here the role of the memory 

of a filter. Of course the error in the evaluation of the model of body 

will be the lower the narrower the transmission band of the filter, and 

the closer to sinusoid the signal x(t). 

Ех. 

y(t) = yolt)+ eyi(t), L(t) = L(t) tex (t),e C1 (11) 

where: 

Yo, Ly) — determined functions, 

y; and 1, — random stationary functions. 

For the determination of the transfer function © it is necessary to 

determine 

k(é) = Ко(&) + eky(§) (12) 

where: 

ky — determined part, 

k, — random part. 

Using (6) we get 

FQ) =) — yo) =H) — | ko(t— 1) xo(3) dz (13) 

(0 = | GE- 9/0) dz (14) 

where: 

1 t ей ($ — <) 

G(ć—2) = >> x Fx, (w) = 

Fx, (w) = f х (бе "7" dt. 
—>o
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The expected value k,(£) is 
f 

Ek({)= f G(E—1 Bfltide (15) 

The correlation function for k,(é) has the form 

K (t,t) = Г Г Сы — 96, — Ен) — ЕК) — Ef(e;)| dz, dr. (16) 
—co — co 

In this way for the case of normality of the process the problem, 
after the calculation of the first two moments (15 and 16), and after the 
determination of the transfer function of the system, is fully solved. 

The transfer function determined the form of the differential equa- 
tion connecting ex. strain (y) and deformation (z) in ‘time, while the two 
calculated moments allow to predict the probability of the realization of 
this model. One more thing requires attention in this action: the entrance 
(x) and the exit (y) are presented as sums of the determined and the 
random parts. Now this determined part is just the element of the 
structural analysis, a very important thing from the point of view of 
the possibility of getting to know this process. It is just the transfer 
function of the system that determines it. 

Continuing further the problem range of the structural analysis it 
seems worthwhile to point to the equation 

а?у(1 PO ово = |v, 22] + oxo (17) 
where: 

x(t) — random stationary differentiable process 

» > 0. 

  

dy(¢ . : 
This equation is important because in its part uf | (t), m ) it contains 

the problem of movement damping. The problem cf friction is widely 

discussed in rheology. 

Equation (17) can now be solved also for the case when z(t) is a non- 

-stationary function (by using the function of spectral density dependent 

from time). 

This case, although very important from the practical point of view, 

does not bring any particularly important moments to calculation 

schemes. Below we present a sketch of solution for a case when the
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density of probability of solutions of the equation is not normal. 

A considerable attention is paid in the mechanics of agricultural machines 

coercions, and it is often assumed that they must be normal. But from 

the experimental point of view it does not necessarily have to be so. 

The normal process takes place when the effect occurs as result of the 

summing up of infinitely many uncorrelated increases. A process of such 

increases is not differentiable. Thus the process 2(t) is influenced by the 

number of components that can be correlated to one another. This is the 

cause for accepting an anormal distribution for z. 

The equation (17) is apart from that nonlinear, because of the element 

of friction. The solving should be started from linearization. Linearization 

is done by decomposing all the nonlinear functions included in a given 

equation into Taylor’s string in respect to fluctuation. Let’s adopt 

Y= Uy Y= YU (18) 

which then gives 

J, + 00), = Hf [Yo] + дих (19) 

Y — Yo- 

which can be presented as 

dy; 
= — = F; (5152 Хх, У, u) (20) 

1=1,2 

i = const. 

y = const. 

Linearization should be done in respect of the value 

= Mm, Ye "Mi — My (21) 

m — mean value. 

Considering the fact that mean value constitutes a main part of the 

function for the first two terms of the Taylor's string, we obtain 

     

F; [91 V2> X; [l; У] = = Е; ть, + yt, me + 92» Mx + X°5 Ms vf = 

Oki 
= EF, |m,, my, Ma, u, v| + DY, ft Bin, Ms (22) 

j=l У; 

Since 

my; = 0, Myo = O . (23)
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and applying to the obtained equations the operation of average values 
we obtain the final form of the equation 

you im V|m ту | — [x om и т; | — c)» — 

5 
omy 

  

  

  Hoos fone 
— А[ть т; | = пух. (24) 

The above equation can be treated in two ways: as an equation of con- 
stant coefficients (assuming that the mean value from experiment is 
a determined function) or that the equation has random coefficients (in 
the population of experiments the mean value is a random function). 
For t = 0 

  

  

Y= Yot Yr (25) 
where: 

Yr — particilar solution of heterogeneous equation 

У = у д. ЧУ 
= | 

c; — constants determined from the preliminary conditions of given 
distribution densities, 

yj; — system of linearily independent solutions of homogeneous equ- 
ation. 

Obviously 

у = с, У1 + C2 Yo 1 Yr. 

Marking 

д 
О, =-—и бт; / |m,, ту | > 

Q— —u> lm m; | — ot] 2 OM, YO Ey 2 

д | д a 
H=m; —u бт: [J] moms || И R, [Ат ||» +- uf mm, | . 

We obtain 

y e OW +Q,9 = Wl us, у, Н, x| (26)
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The function H should be treated as a stochastic signal usable (part 

that is not the white noise). It may be that .H will be the only compo- 

nent of the function yw. The above remark is significant because it makes 

the notion of stochastic complex coercion more precise. 

Since y; are linearily independent solutions of homogenous equation 

the following conditions must occur 

Р\ | ау + 025, | =0} =1, (27) 

E|| 49, + zy,| | =0. (28) 

where: 

01, dy — constants. 

The problem then has two preliminary conditions y (0) and y (0) ha- 

ving their own distributions, and so at the determination of the distri- 

bution function of equation (24) there is the necessity of considering the 

distribution of constants. 

There is a considerably large group of media characterized by a high 

regularity, for which coercion is negligible, and the preliminary condi- 

tions are very important. For such media the distributions of solutions 

of their equations will be a function of the preliminary conditions. It 

seems to the point to take a closer look at these solutions. The problem 

of the determination of the probability density of solutions of the move- 

ment equations seems as follows: 

У; = Ff; [555.5 1 = 1,2 (29) 

0) = 3; 0) (30) 

where: y/(,)— random variables of a known total distribution of pro- 

bability. 

y is here an elementary occurence. Basing on the mathematical descrip- 

tion of elementary occurence we should indicate what is meant by it in 

a concrete case. Then we should find the transformation of random 

wector 5° (у) — describing the preliminary conditions) into the vector 

y (t, y) — describing the solution of differential equation. | 

YU) = gt = to ,9100)5200| (31) 

where: 

g; — the sought deterministic functions. Now if 95 for every j will be
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a unequivocal solution of the preliminary problem (29) and (30) in which 
0 0 

the preliminary conditions have the total probability density folyr(y), yo(7)] 
and the functions will be continuous and will have continuous derivati- 

  

ves Ei k = 1, 2, then the sought density of probability will be 

бу» (у) 

0 (hy, Эй) | 
Г, > — 3 52 О Soe (32) 

where: h; = [9j]~1 (reciprocal of function g), i.e., for every t it is 

я) =ь 0), 5,6]. (33) 
If however the system of equations (29) has a complex form and it is 

not possible to obtain explicit solutions, the probability density can be 
determined otherwise. The Liouville-Gib’s equation is applied and we 
obtain the distribution 

Е [ OF, (t,t 3 
Flt:3v32] = jo [16052 ()] exp | —J r + 

1 ło 

OF, (1, to3 £19 8) | = |1. 34 4 ele) | ae (34) 
In order to obtain the distribution (34) certain conditions must be 

met. 

0 —0 

Let the point M, of the co-ordinates (ny, Yo) = y be the initial point. 
—0 —0 
Y will be the realization of the random vector y (y) of the preliminary 
conditions. The probability that M, belongs to a certain set S, in phase 
space 

Р LM, Е So} = JS fo (9152) dy, dy? , (35) 

where: 

№ (у, у?) 15 the joint density function of the initial conditions, about 
which we should assume that it is given. So there arises the question 

where do we take it from. Now there are two methods mutualy comple- 

mentary, through investigating experimentally the material constants 

and through mathematical modelling. For the time t > t, it will be 

PIM,E SĄ = SSf(uv2)dyydy, (36) 

where: f(y1,9y2) — joint function of the density of random variables y, 

and y, at the moment t.
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Since movement is ruled by the deterministic laws 

Sffo( Id) dy dy = Sf (992) dysdyo- (37) 
o t 

Hence we obtain 

of 7 оДЕ, (УзУзхьиь у) | ЭН) | = 
dz ду, T dy; = 0. (38) 

Solving the equation (38) we obtain the given above result (34). The 

equation (38) was given, not because from it is easier to obtain the dis- 

tribution than in the case of (32) but because, it is valid in the statistical 

theory of irreversible processes. Apart from that, as it was already men- 

tioned in the case of difficulties in solving the equations (29), the equa- 

tion (38) is easier for numerical solving. 

In the case when a body or medium we investigate is not characte- 

rized by a considerable regularity, and such a medium is staw mass, and 

coercion is not normal for the finding of the distribution density of the 

solution of differential equation (17) we can utilize Edgenworth’s string. 

U
B
 

w
 foie) = ol) — 23 OB + p(gi=3)9* O rgq|gs) — 

== ER 1053e (5) (yt) ae 3)¢ W (ylt) — or (o 3) (ale) + (39) 

  

    

  
  

  

where: 

p — normal distribution, 

u, — central moment, 

o — standard deviation. 

t t y(t) y(t) y(t) y(t) 

t) yo(t) |. it) d2( 2) 
избе |. ...| У: (т) dr 1(T/ Jal 7 

J / J(T) Ja( 1) J1(T) Ja( 7) 

У, (т) У; (т) 51 (т) У»(т) 

  

  

  

у, (=) ут) 

. У: (т) Уз (т) 

ул (=) у, (=) 

    

K-(2,%,... ;t) dzdr... dr | (40) 

MZEAC 

where: K — correlation function.
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The distribution (39) is different from normal, and the difference is 

greater as higher are the values of higher moments. 

Now we should answer the question how to make more precise the 

non-linear element occuring in equation (17). This element can be mo- 

delled in the way presented below. 

We must assume that the friction force T depends on the relative 

speed V of bodies in friction. On every elementary surface dA of the bo- 

dies in contact of the surface A, there occurs the unit tangent force т. 

It occurs at determined time moments, and we can assume that between 

these moments its value is zero. For the sake of generality of considera- 

tions we may assume that between these momentary points the values 

of the unit forces may change their denominations into reverse. The part 

of surface on which 1 >0 is the surface of actual contact A, at a given 

moment. 

So A. >A, 

Т = АА = Гт,аА 
я А, (41) 

т, — mean value of unit force in the area of possible contact of two 

bodies, 

T, — Momentary mean unit value (actual). 

Т T 
Te = q.> и =. I =fl tu == Ay ta (43) 

If we assume that the relations 

dy TG _ 4==PV) (44) 
present a dimentionless statistical characterization of friction, it is possi- 

ble to interpret them as the probability that all the points comprised by 

a given contour are media of transmission and transformation of energy. 

Vector of speed V can be discomposed into two ortogonal components 

ГЕИ, + И,. 

Thus 

PW) = p (Vx) p (УМУ. (45) 

The conditional probabilities V, and V, are independent e.g. p (V,/Vx) = 

= p(V,)p(Vz). In the general case p(Vy/V+) ~ p(V,). However for straw 

mass we can accept the independence of directions. In order to assign
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numerical values to the relation (45) we should find the function VY (V-; 
V,) fulfilling the equation 

p (Wy/V2) = P(Vz; Vy) p (Vy), 

Or 

p(V) = ¥ (Vz; Vy) p (Vx), P (Vy). (46) 

The function Y must be positive and finite. Let Y be the upper 

limit of W 

~ 

# =зпр (И: Г) 

then 

PW)<F(v) = Fp(V.)p(Vy). (47) 

Since |y| = Vo; +v,? then 

Вуз + v,*) = Pp(V.)p(V,). 
The solution of this function equation is the function. 

PW.) = net, (48) 

If p (Vx) <a then the indetermined coefficient a should be negative and 

have the value 

а = — а? 

and hence 

РГ.) = ne- eV i= a = г. (49) 

From the last equation we find 

T = Ag; = Ady = nA tee". (50) 

The friction coefficient, at a known normal force N, and for the value 

Pr = = (unit loading on the possible surface of contact) will be 

f= ne eel, | (51)
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The values z, can be determined on the basis of the changes of kine- 

tic energy of material body. Now this energy during movement changes 

into heat, which is in the contact layer of the thickness h. Considering 

the statistical character of the process of dissipation of energy of bodies 

in friction we substitute the surface densities with their mean value 

P1 + P p= =“ , (52) 

Assuming that the momentary tangent unit force is equal to the chan- 

ge rate of unit kinetic energy, we get 

_ d [p,V¥?\_ 1 dp, 1, dV 
“я | jae + pV =. 

2 

; dp dV 1 (dp, 0 == — | -72])2 Assuming further p” = ds and Tę = p, di 2 | Е I 

we finally get 

Tr о’У? je To (53) 

and 

f= >, (1 - poVZ)e-eV*. (54) 

In order to determine the friction coefficient more accurately we 

should take a closer look both at the surface phenomena accompanied by 

local changes of temperature, and at the movement of the medium 

which fills the space between the two bodies in friction. A characteriza- 

tion of this medium is, in the case of cereal mass, almost impossible. 

So there remain model, ex. analogue, investigations. Assuming that re- 

sistance is viscous the value of the additional force will depend, apart 

from speed, on the thickness of the contact layer h and the surface area 

of possible contact 4,, and will be 

т, - Ср Ал (55) 

m 1 4, Ć 

And hence we finally get 

moos yn) eV? fr= 3 (to + pV") e “ap,
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For a still fuller picture we should expand the formula (56) with ele- 

ments containing term for the maximum actual pressure on the surface 

and the temperature of the medium between the bodies and the tempe- 

rature of the surface itself. 

Accurate solutions can be obtained through solving the equations of 

conductivity in elastic medium at assumed peripheral conditions resulting 

from the mechanics of movement of the medium. 

The composition of the friction element as to both the interial and 

exterial friction in actual conditions is complex and as it was presented 

in the preceding two examples it may involve different difficulties of 

mathematical nature. Often then it is profitable to simplify, even consi- 

derably, the model, so as to obtain a solution with the help of which we 

can expand the notion apparatus for further expantion of the problem. 

As an example we can use here the model of friction propsed by Van 

der Pol. Despite the fact that many years have passed since the moment 

of its creation it is still, as can be seen from literature, utilized in pro- 

blems often very remote from friction. The equation system (19) equiva- 

lent to the homogeneous equation (17) will take, for the Van der Pol case, 

the form | 

1 = 
Ja=—— 2 (31 — Dy (57) 

where: 

622 ==1 

ДЕ = В 

f [do] = (У? = 1)y,. 

We make the following approximation | 

1.2 а, + 41 + 2 (58) 

where: a;, d@, constants chosen in such a way that 

  

E( 9792 — а, — 4) — 32)? = min. - (59) 

Solving the presented variation problem we get 

a, = E| (y — Пу] — аВ (V1) — aE (2) (60) 

= E|(01 — 1) », —EJ(7] — 1)» [5 — EV) | | (61) 

152 e 

PEZACHIE: ly. — E(y1)|
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1,2 — vector of constants, 

@ — Kronecker’s preduct of vectors. 

Hence 

Е(у! 5-] 
a, =0, 4 =0, a,=—— (62) 

Е) 
Now, passing on to the heterogeneous equation let us assume for the 

sake of simplicity (otherwise than before) that coercion is a normal sta- 

tionary process of mean value equal zero. 

If «<1 then y,, y» are normal processes, and so 

E(%432) — E(34)E(32) (63) 

(Y1, Yz must be independent). 

From (63) follows 

ty == Е У) (64) 

Е(у:) = [| ds | G(S)G(sS)R(s— s')ds (65) 

where: 

G — Green’s function, 

R — correlation function. 

The Green’s function must fulfill the equation 

d , ; ; 
j, St—"')—(m—a.)G(t — r) = Ió(t—T) (66) 

where: 

I — unit matrix, 

6 — Dirac’s delta function. 

For the case considered 

€ 

— > (0 — 1) 
G(t) = ~ Ie 2 SIN Wot (67) 

where: 

1, 

u=|1 - gola 1:| 

=1,t>0;l=0,t<0 

In the case when R, (t) = 670 (t) (1 — white noise) 

12 — ZPPNR z. 203
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1 
E(y1) — i 2e(a, — 1) = da 

В 1428 GR € 

  

From (68) it can be seen that if 

(5 =] = (#—1), (69) с 

For the system (57) to have periodic solutions on the basis of which 
a general stationary solution can be constructed the condition (69) must 
occur. 

For R,(t) = R,e — Ви. B>0 (70) 

In further analysis of friction we should also consider theories totally 

deterministic. 

Assuming that ex. in straw madium both the interial and exterial 

friction can have a mixed character, appropriate rules of friction must 

consider the dependence of the “dry” and “viscous”? components on speed. 

As it is shown by experiments dry friction decreases, and quite rapidly, 

with the increase of speed, while viscous friction behaves reversely. 

In literature it is possible to meet a model of friction which is based 

on the following principles 

— there is a large difference between the kinetic and static dry fric- 

tion, 

— kinetic dry friction is constant, 

— viscous friction increases linearily together with speed. 

This model is much simpler than the presented Van der Pol model. 

However, it has a considerable fault; it does not explain the situation at 

the beginning of the system at all. Even the assumption of non-linear 

dependence of the viscous friction coefficient on speed does not help. 

While in the zero range we observe a considerable value of the friction 

coefficient (close to the static coefficient) and then either an initial decre- 

ase of its value and then an increase, or increase, decrease, and increase 

again. Exact mathematical explanations made on the basis of physical 

factors is rather complex and does not seem to be complete asy yet. That 

is why approaching the problem in the phenomenological way it is po-
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ssible to approximate the relations quite accurately with differential 
equations. 

Very universal, because of its constants, is the relation 

Т- — се. (71) 
So far in our considerations we have dealt solety with structural 

theories. Below we present a structural model. It is a rheological model 

of cereal mass moving in a slot. The aim of these considerations is to 

turn attention to certain elements of the investigation process which ha- 

ve a strictly methological character. 

In a very wide approximation a situation such as the one presented 

below may occur in the chambers of presses, at a certain place on asan- 

gent plane to the screw of the worm in the slot between the edge of the 

worm and the cover, and in some cases in the slot of the threshing drum. 

The plant material in a slot can be described by the position of fibers. 

If the material consists mainly of straw we can approximate such a me- 

dium with the standard model. This model constitutes a combination of 

the models of Kelvin — Voigt and of Maxwell. Because both the models 

lead, in respect to damping, to dynamic problems in effect of which we 

obtain converse results, it is possible to approximate the investigated me- 

dium quite well by an appropriate choice of values of component para- 

meters. 

The Kelvin — Voigt model is a linear one. The plasticity limit intro- 

ducing non-linearity into a system does not occur here. The model is 

good in cases when ccercion is of not too high frequency. Of the medium 

we describe with this model we must know what is the form of the func- 

tion of strains o = o(t). This is necessary for solving the basic differen- 

tial equation. - 

Then we assume that preliminary deformation is zero. This is a very 

important remark, since in the case of a working process of whole ma- 

chine we must assume that on entrance to a successive mechanical sy- 
stem the deformation procured earlier should be treated as “natural”. _ 

At a constant strain deformation increases in a continuous way to 

a determined asymptote. In shock cases deformation increases actualy co 

fast that already from the initial moment it is possible to assume that it 
is the same as intended. 

Apart from that the body has the property of creep and also the pro- 

perty of elastic delay. But it does not have the ability of relaxation. 

Apart from that the model has dissipation properties determined by the 

force of damping in proportion to the deformation rate, which is in 

accordance with the assumption adopted in equation (17). 

12*
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The second model is a combination of elasticity and a damper. The 
model is applicable also in a certain range of frequrncies. A medium of 
the character of Maxwell’s body has the ability of relaxation, which is 
characterized by therate of strain decrease at a constant deformation. In 
order to solve the basic differential equation for this model we must 
know the function of deformation. 

The preliminary condition for this equation is the sudden obtaining 
at moment t = 0 a determined deformation. This leads to the establis- 
hing that at the initial moment only elastic deformation will occur. The 
presence of relaxation will cause’ that the deformation decreases conti- 
nuously. This model has also a function of creep, but it does not have elas- 
tic delay. Both the models become particularly simple if we deal with 
only formal changes. As to vibrations the two models differ in that in 
the first one damping is in direct proportion to frequency and in the 
other in reverse proportion. 

In the presentation below we give a basic mathematical description 

of these models. Basing on data included there we present a probabilistic 

model of the problem. The problem concernes the finding of the density 

of distributions of solutions of rheological equations of state. In the K—V 

model we look for deformations and in the M model for strain function. 

Both the values are random variables and therefore we must determine 

the distribution of density of probability describing the changes of their 

values. If we assume the simplest possible model describing the changes 

of « or o as an effect of cumulation of many causes determined by 

external coercion and by the structure of the material, we will obtain 

a certain scheme of random erring. Ex. the state of medium being 

between two bodies in friction depends on many factors and even if we 

determined all od them in detail we would not find out what relations 

occur among them and what values these parameters can adopt. 

Let then the sum of effects caused by external and interial factors 

in relation to the discussed random variables be 

$ _ | | | (вла et tn. | (72) 

This sum can be stationary or non-stationary. For the sake of generality 

of considerations we can assume that the argument of function S does 

not necessarily denote time. 

Let in the range 0 — t be n subranges, then the increase 

5(5(0) = № [5+9 — $). (73)
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If we divided ex. a volume of grain into the n parts and investigated 

their influence of their total resistance to shock (this will be function S), 

then at n>oo we would obtain an exact picture of the resistance, and 

not its approximation. Such is the physical sense of the sum of random 

variables. 

For physical purposes it is, however, enough to adopt n<coo, Let us 

assume for the beginning that x, are independent. This is not in 

accordance with the remarks we have made earlier. We treat then the 

assumption as a hypothesis which can be experimentally check out. This 

assumption is not necessary, but if it is not fulfilled it greatly complicates 

the problem on the mathematical side. The fulfillment of the condition of 

independence causes that this is a Markow’s process. 

Another restriction 

xk = | —h Р(хь= —h) = pa (74) 

where: p — probabilities 

Pit Pet P3 = 1. (75) 

Thus ex. strain (S ) is a result of cummulation of k effects, each of 

which may with a different probability be h,—h and 0. This last case 

indicates a lack of change of state. Since S, is realized from state S,(0) 

to S,(t) then the number of all temporarystates should be set for n, and 

then <= t . Next let us assume that for every argument 7, the value 

x, is realized. The arguments 1, will then form the string 

т, 2т, Зт, ... (76) 

with the probabilities p;, pe, p3 respectively. 

This then is a case of oscillation of the axis of strains (in the case 

in question). We should note that for the fulfillment of preliminary - 

conditions the start must take place from the indicated argument. From 

the probability calculation we know that the argument may be zero for 

every case, since if it was otherwise, because of the occurence of some 

strains already then, they could be deducted as a constant value. 

The step of ofcillation is then r and the increase of the. value of 

argument (th, 0). 

The first task will be the determination of the probability
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of the occurence that for the argument t = nz the value of the random 

variable will be x = kh. Here n = 1,2,... and k = 0, +1, £2,... In turn 

Sp,ican adopt the value kh only in the following three mutually 

exclusive cases 

{Su — (R a ПАЛ хи+1 = h| V {Sn = (Rk = Dh \ Xn+4 — h\ \/ |5, = Юй Л Хь+ 1 ¢ 0} 

79) 

р: = DyUp,k—1 = P2Unk+1 + P3Un,k- (80) 

The products in the sum come from the fact that the occurences 

described by the probabilities pj; and u, are independent. For n = 0 

Удо = 1 k=0 

(81) 
Uo k — 1 К = 0 

The differential equation (80) and its preliminary conditions (81) give 

the solution of the posed problem. The solution will however be more 

comprehensible if we pass from the differential equation to a differential 

equation. In order to do this we must substitute the probabilities by 

corresponding densities of probability. This may be done if z is very 

small. L.e. 

  

ий 

om : Р | vh< $. ий = Uny ti Uny+2 Tee Ty | = | ex) dx (82) 

vh 

Ин, К 
Un,p Lz u(nt,kh)h, u(nt,kh) ~ a (83) 

From the physical point of view the function u(t,x) will be at least 

twice differentiable. 

Equation (80) will take the form 

 u(ft+z,c) = pyu(t,c—h) T pzu(t,c - h) p3u(t,x). '(84) 

Taking pz = 1—Pp;—DP2 

u(t+r,c)—u(t,e) = —pylu(t,r)—u(t,c—h)]-F pzlu(t,c Fhy—u(te)]. 

From Taylor's series we get 

eu(t,x) 
ot ° 

e2u(t,x) _ bul t,x) 1 их) 5 
m0) = Ot T+ aOR -... 

4 eu( t,x) O4 2?u( t,x) Pt? oży(t,x) 0 - l 
u(t + t,x) — u(t,x) = 9х 2!\ 22 Lou 
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Analogously 

д 2 

щьх — h) —u(t,x) = > h+ AL KŻ + .. 

д 27, 

u(t,x + h) — u(t,x) = PZ) | 4 5 Sue) jp bess a 

Since 17-0 then after the transformations we get 

u(t, x) _ z (Pi—P2)h du(t,x) 4 1 (6: +2)? Эщех) 
Ot — т Ox 2 T Ox? 
    +... (84.1) 

2 Pt — 2 = a— mean transfer on axis for a unit of argument. 

Instead of the preliminary conditions (81) we demand now a detailed 

solution (84) which at t>0 is convergent to 6 Dirac's function, i.e. 

u(t,c)>0 for xz=0 and u(t,0)>-00 but in such a way that the integral 
of the function u is 1 for every t > 0. At adequate values a and b there 

is exactly one solution of the equation (84) that has this property and 

it is precisely this solution that we can adopt as an approximation of the 

distribution of probability of random variable S,, for large n. 

The equation (84) can also be obtained at more general assumptions. 

Ex. 

where: 

Ly = 0, £1, £2, +..., £m. (85) 

Then a and b will depend on z, ie. the distribution of probability 
of every value of strain will depend on the position on the axis of strains. 

Carrying out a consideration similar to the above we get 

du(t,x) (23) 2 [at] +3 zz Воже). (86) 
Since strains can adopt only values from a determined range, this 

fact should be included in the peripheral conditions. Rheological equations 

of state for the Kelvin—Voigt model and for Maxwell model can ke 

written as 

И: 10(, оо Ве (87) 
т yn.” т 

»£— constants (there is also a way of solving the problem where: 1 1 
Ty 

when the constants are not ex. mean values but are random func- 

tions), .
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o(t) and e(t) are for the first and second equations respectively the 
random functions of independent increases alternately serving as coer- 
cions. 

For the K—V equation and o for the M equation are also mark 
processes if certain known conditions are fulfilled. 

In order to calculate the coefficient a and b of the equation (84) we 

should integrate the equations (87) in the ranges (t,t+7) 

т т 

щО-ко-у | мых || дом (88) 

£--T | t+t 

x(¢+1r)—x(t)=E | e(t;)dty — = | a (ty) dt,. (89) 

The coercions must have a certain expected value. 

Assuming from Table 1 from the peripheral conditions respective oo 

and 50 

Eel [x(t +) — x(x == (ег 

hence | 

Bin = - (0, — e) (90) 

(x — rheological parameter) 

Eu} ee +)—2(0) l ; 
xX=o = 2 (%0—0)7 

  

  

1 
ам =— (&— в) 

t+Tt--T 

я, ват _0 X=E =a | | Ko (t, — t,) dt,dt, (91). 
| | Ты 

Assuming for both cases K(r) = a(t) 

т ‚ (92) do = 75
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Em\ [x(t +1) — x(1)]?|x=o| =bu=E2 (93) 

where: E — operator. 

If the coefficients a and b do not depend on the argument t, then 

the equation (86) assumes a stationary form 

|9 | — 560% | 0 (94) 

the solution of which is the function 

ula) = epx p 2 a1) dx | (95) 
b(x) b (21) 

where: C — the constant of distribution. 

For the models in question we will get 

uk,(€) =ch?exp | — — des). 

Eo Ą 

Since e, = 0 

use 8) = crfexp tr (2a, e— o), (96) 

un(5) = -Fz ©xp | = < W doy. 

Since o = Ez | 

по еек [рае (97) 

A helpfull thing in this respect will be the determination of the mean 

Z and the Variation o,? for e and o. Explicit solution can be obtained in 

the case when a and b are linear functions г ап о, 1.5. 

a(t,e) = a+ Ge, a(t,o) = a, + a40 _ (98) 

b(t,e) = B, + 16, b(to) = BP, 1 Po. (99)
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Applying the apparatus of characteristic functions and elementary 

equations of first degree we obtain 

e(t) = Е (e — 1) + ec, 

2а’1: at 
o(t)= 52 a — 1) + ое" (100) 

2 а: AO sM ‘1, 

F(t) = fe et 1), (101) 
1 

For the two rheological models in question 

  

a 1, a — ti ” _ 1 ” — ere 
0 — 7 90> 141 = т? бо for 41 = = 

l - | (102) 
Вь т? В: = 0, В” = JB, P1=0. 

Hence 

a za 

e(t)=— o, (e "—l)te ‘, 

=z г 

o(t)=— e,(e * —1)+oe ', 
21 2 т 

0. (0) =— 27 $ —1), 

2 1 
с” (в) = — (er —1). 

On the basis of the last relations we can determine the constants in the 

distributions (96) and (97) 

  
  

  
  

Cy? = 1 

у п — z (I — exp [—2tr '] ) 

1 | 

Cky = (103) 
“ V ze y? (1 — exp [— 2271] ). 

е 1 
  
  

BE?  VuEe(l—exp[—2tr"")], ‘
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a E 

V ar(l—exp[— 2tr-'] ). 
  CM   (104) 

If we worked out similar calculation schemes for all the commonly 

known rheological models then we could, on the basis of experimental 

data, choose the most probable structural model. 

Making measurements it is possible to determine the parameters of 

their distributions and in the case of normality to compare them with 

those calculated theoretically. Theoretical calculations similar to those 

presented above should be done for all commonly used structural models. 

As an appropriate model for a given medium we should treat that 

which gives the greatest from the point of probability agreement between 

theoretical calculations and experimental data. The agreement could be 

investigated with the help of standard tests. 

Coming back now to the example of the rheological model of straw 

mass it seems to the point, because of the contents of other plants and 

other organic elements such as broken and often crumbled leaves, to treat 

the medium as two-phase and to add in series Maxwell body to the 

standard model. Such a construction of the model would be argued for 

by the fact that the second phase will have a much higher elasticity and 

that only damping wille be of any greater influence on the whole medium. 

Of course equations will be here much more complex. 

Recapitulating we should state that presented problem of applying 

stochastic processes in the finding of a rheological models is important 

because of the probabilistic characteristics of the medium. 
The finding of the model with deterministic methods is in practice 

rather limited because of ex. great distribution of constant values, the 

measure of which is not in this case considered. The present paper is 

an attempt at indicating this problem and its main aim is to initiate 

discussion of it.. 
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Kelvin-Voigt model Maxwell’s model 

Dampin 1 = 

energy ŚT af = = ¢ 2 й-— i $ST=a0 в) T o т 
Frequency | 

Relation between ¢, = ¢; = 6; о, + oj =o Es + &] = в, CO; =O, =0 
strains and 
deformations ‘%— elastic part, 2?— viscous part o,= Ee, O)=N-¢ 

Assumptions o =a(t) & = &(1) 

(о д " 
Rheological o=Ee+ne=E(e+Te) вт’ в = Я 2—6 

equation of 
б (1) Е . . б state s=— ao = E g(t) — — 

4 т т 

Е— modus of 7 = —- — time of elastic delay chara- т = g= time of relaxation, chara- 
a . .. . е ei cterized by speed of defor- cterizing the speed of strain 

1— oe ania mation decreas after remo- decrease at constant defor- 
of viscosity val of loading mation 

Function sought ¢ = (1) o =o(t) 

Boundary z sa = в = Г г. = =(0) = 0, a(t) =o, =const g,=o(o) =Ee,, e(t) = & = const 
conditions ‘ 

t t > te _+ 

о 3 в (Е) = двое 
Е 

1 c 

Solution c= Ед = const 

  

    

  

t= 0, 

g(t) = 

. t 

1 Ст 
5 1, | 

Function of 

creep 

o(t) =o, = const, 

&(1) = c! +=) 
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cd. table 
  

Kelvin-Voigt model Maxwell’s model 

ty Е t o,{ ~2\ -+ — +. 
_ т 0“ |. |. tT=ee © 

  

  
  

  

Function of eh | 
é 50 = 7 

elastic delay e None 

o= const | Nore 
N 2 t 

ty T=nE" 

Funation of None ot) Bet 
relaxation | y(t) = go Oe 
  

J. Haman, A. Marciniak, Z. Siarkowski 

PROBABILISTYCZNE ASPEKTY MODELI REOLOGICZNYCH 

= 

Streszczenie 

Generalnym założeniem pracy jest hipoteza, że nie istnieje możliwość napi- 

sania uogólnionego równania konstytutywnego dla ciała scharakteryzowanego sprę- 

żystością, lepkością i plastycznością o lokalnych rozkładach statystycznych i róż- 

norodnych złożonych kombinacjach, a więc takich, w których model reologiczny 

jest funkcją położenia i zależy od nałożonych na ruch warunków brzegowych. 

Poszukiwanie modelu reologicznego jest sprawą konieczną z punktu widzenia 

projektanta urządzeń, dla których ośrodkiem powtarzanym jest właśnie materiał 

roślinny. 

Jest to sprawa o tyle istotna, że nie można mówić o optymalizacji urządzenia, 

jeżeli nie zna się rozkładów rozwiązań konstytutywnych medium. 

Poszukiwanie modelu reologicznego ośrodka pracującego w danym układzie 

mechanicznym można realizować wieloma drogami, jednakże wydaje się, że me- 

tody stochastyczne są tutaj najbardziej właściwe. 

Metoda stochastyczna w tym przypadku zapewnia znalezienie dla danych wa- 

runków najbardziej prawdopodobnego modelu. Założeniem jej jest poszukiwanie 

rozkładu połączeń: szeregowych, równoległych oraz szeregowo-równoległych posz- 

czególnych członów składowych modelu. Poszukiwanie to mogłoby być realizowane 

na drodze błądzenia po karcie, której węzłami są człony reologiczne, a przejścia 

są zmiennymi będącymi szumami. 

Z=U+V 

gdzie: U — jest członem deterministycznym, V — członem losowym. 

Rozkłady rozwiązań konstytutywnych uzyskiwać można z parabolicznego rów- 

nania typu równania Kołmogorowa, którego postać uzyskuje się z procesu błą- 

dzenia.
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Wstepne informacje o procesie wchodzace w wektor U sq natury fizycznej 

i można je uzyskać na drodze bezpośrednich pomiarów wytrzymałościowych. 

Problematyka przedstawoina w pracy ma charakter poszukiwań i nie stanowi 

uniwersalnej metody dla wszystkich tego typu problemów. 

Я. Хаман, A. MapuuHak, 3. Сярковский 

ПРОБАБИЛИСТИЧЕСКИЕ АСПЕКТЫ МОДЕЛИ РЕОЛОГИЧЕСКИХ 

Резюме 

Генеральной предпосылкой работы является гипотеза, что не существует 

возможность написания обобщенного уравнения, конститутивного для тела, оха- 

равтеризованного упругостью, липкостью и пластичностью с местными стати- 

стическими распределениями и различными взаимокомбинациями, значит, та- 

кими, в которых реологическая модель является функцией положения и зави- 

сит от наложенных на движение береговых условий. 

Поиски реологической модели являются проблемой, необходимой с точки 

зрения проектирования приборов, для которых повторяемой средой является 

именно растительный материал. 

Это — настолько существенная проблема, что нельза говорить об оптима- 

лизации прибора, если не известны распределения решений конститутивных 

уравнений медиума. 

Поиски реологической модели среды, работающей в данной механической 

системе, могут осуществляться многими путями, однако, кажется, что стохасти- 

ческие методы являются тут наиболее подходящими. 

Стохастический метод в этом случае позволяет найти наиболее вероятную 

модель для данных условий. Предпосылкой для нее являются поиски распре- 

деления последовательных, параллельных и последовательно-параллельных 

соединений отдельных составляющих членов модели. Эти поиски могли б осу- 

ществляться путем блуждания по решетке, узлы которой являются реологичес- 

кими членами, а переходы — переменными, являющимися шумами. 

Z=U+V 

где: О — детерминистический член, У — случайный член. 

Распределения конститутивных решений можно получать из параболическо- 

го уравнения типа уравнения Колмогорова, форму каторого находят в ПРо- 

цессе блуждания. 
|


