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PROBABILISTIC ASPECTS OF RHEOLOGICAL MODELS
(PART 1) *

Janusz Haman, Andrzej Marciniak, Zbigniew Siarkowski

In scientific considerations of the structure of mechanisms affecting
the processed medium almost always there is the necessity of describing
this medium in a way appropriate to the description of the mechanism
itself. Tasks of this type were posed for solving for a long time. Parti-
cularly widely was this range of problems dealt with in soil investigations.
Also a similar problem range is connected with the consideration of the
working processes of agricultural machines. A working process of machine
consists of a series of elementary operations, each of which is realized
in a different dynamic system. To gest to know the whole process it is
necessary to analyze all the subsequent situations the processes medium
enters.

Since rheology is a science dealing with media in such a way that
it tries to answer the question of what the deformations and strains are
in a given point of the investigated body at a certain moment at known
parameters of externam influences and a known history of influences
occured earlier, therefore its task is to provide an answer to the ques-
tion of the physical nature of the medium 1is. Analizing more
closely the above formulation we conclude that since the medium which
is processed creates it history by passing through successive stages in
which it changes its properties, would it not be of advantage to consider
the successive stages separately.

Considering the behaviour of the mass of cereals and other plants,
that form jointly a corn-field, in a working process during harvesting,
we deal with two closely related questions — a mechanical and a rheologi-
cal ones. The movement of cereal mass in a cereal combined harvester
is described as a system of transfers of the subsequent points the mass
in relation to the mechanisms of the machine, which constitutes the

* Part to provide an answer to the question of the physical nature of the
work will comprise numerical calculations and will be published in 1979.
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mechanical question of the problem. For the rheological part of the
problem this movements is determined by the initial and boundary condi-
tions. From the point of view of mechanics the rheological problem will
consist in the description of the movement of the points of the mass in
relation to one another. Thus the solving of the rheological problem is
not possible without the prior solving of the mechanics of movement.

The above presented thesis of the consideration of partial causes and
effects is from the mathematical point of view simpler than a global
solution. Besides, it seems little probable that it is possible to build
a physically realizable mathematical model of cereal mass, at the same
time true for such systems as ex. the harvesting, threshing, and cleaning
systems of a harvester. As is known from literature, media that are
simpler from the mass in question are not well describable mathematically
in the sense of rheology. And if we consider that the change speeds of
external forcings were low for these media, we have an almost complete
set of arguments for, let us call it, the individual, from the point of view
of the forcing system, approach to the description of the medium.

Very popular is the making of a description of a body with the help
of model analogies and structural models. Ex. a model analogy will be
the known in physics soap-bubble of Prandtl or the ideally inflexible
homogeneous steel ball. A model analogy can also be manifested in
another way, ex. at the building of a diagram of the medium on the
bassis of mathematical equations of known phenomena. A structural
model is a combination of such components as elements presenting visco-
sity, elasticity, plasticity. \

It should be point out here that simple relationships between these
elements concern only homogeneous bedies. And so is someone says that
a grain of wheat can be described by a structural model equivalent ex.
to the model of Bingham, the recipient of this information will under-
stand that it is a homogeneous body. But this is not so. However, it may
be true to say that the Bingham model can be used to approximating the
description of the body in question. The difference between the two
statements is considerable and for its filling we should turn to the
methods of micro-rheology.

Micro-rheology, dealing with bodies with a structure, has two basic
methods: structural analysis, and structural theory. The first concerns
experimental analysis, and this serves to form an appropriate hypothesis,
which is then justified in the structural theory. This theory assumes
a certain summing up of the properties of the component elements.

Thus we should build a theoretical structural model the components
of which would be theoretical bodies, ie. at least quasi-homogeneous.
It seems, that because of the inaccessibility of the methods of structural



PROBABILISTIC ASPECTS OF RHEOLOGICAL MODELS 163

analysis a grain can be, at the most, approximated with a mono structural
model, while cereal mass could be described on the basis of the structural
theory, that is basing on equations of mathematical physics. This follows
from the fact that cereal mass has a large number of components,
each of which can be described by a mono structural model. A mono
model will in this case be a theoretical body. This then constitutes
a bridge between a poly structural model and the structural theory
(ex. a hydrodynamic one considering cracks). The accuracy of the
description depends in this situation on the technological requirements.

If then it is possible to utilize the apparatus of physical equations,
then, because of the probabilistic character of the medium, it is possible
to utilize the methods of object identification.

At present the situation in rheology is still similar to that of Mende-
lejev during building his periodic table of elements. He provided empty
spaces for undiscovered elements. The table of rheological bodies is filled
at its ends with classical bodies, towards the centre with theoretical
bodies, and the very centre is a blank space. This is the space for physi-
cal media. Identification must then consist in the finding of an appro-
priate space for a given medium in the table. The methods of identifica-
tion allow for the determination of two things: the structure, and the
random interferance of the picture of this structure. It is wort noticing
that this second component is often interpreted as a random margin,
an unknown element.

Below we present a sketch of a probabilistic method based on the
structural theory. Here the Wiener’s theory of the “fourth box” is
applied.

y = Kz
where:
K — opertator dependent from time,
; — vector of coercion,
-3; — vector of the reaction of material.

The operator K must meet the following conditions
1) linearity — K(o1x; T axx;) = 0, KXy + 0, KXy
where:
a;, o — arbitrary values, ,
2) implication — [y (z) =0\ t— col==> [x () —0]
3) relation between the operator K and the function of transfer @(w)
KI%) = @ () 1
where:
I — unit vector,
@(w) — matrix of the components gy ().

11+
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. 1 -
Kul&) = 5‘;_[ ﬂ 0 (w)e?Ps dw, (2)
KI'J'(6> — OJ é = OJ
Kif (@)= | ks(t — O f (x)dr, 1> 0 (3)

The operator K is a matrix of the components k;; presented by the
ccnvolution (3) where k;; are Fourier’s transforms (2) of the components
of the matrix of function of transfer. The functions k;; are of the class
of generalized functions. The transfer function (transmittance of system)
has the form '

: P, (iw)
D (im) = Dulim) (4)
where:

P and Q are polynominals of the m and n degrees in effect of
substituting the operators of differentiating of the right (x) and left
(y) sides of differential equation respectively with iw (Laplace’s trans-
formations). A

The expression KI occuring in the third condition is the reaction of
the system to Dirac’s impuls and the transfer function describes the
reaction of the medium to sinusoidal coercion. '

The determination of the operator K is made with the help of La-
place’s transformations of the functions x and y. The functions are
obtained in m successive experiments.

Expanding the third condition we obtain the formal relations
determining the operator K.

Lyj;(z) = Lk;(2) Lxj(2) (9)
where:
L — Laplace’s transformation,
z — complex variable,
j — 1, 2, ..., m number of experiments.
Lyi(z) = ILyi(z)ll (matrix from terms of particular realizations for
i=12,..,n i degrees of freedom) '

2

ay;(2) = | yis()e?F drs

o
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ax;(2) = || ax;(2)|[,
0Xy; (Z) s ;{ x,»]-(r) e'ZT d‘[ 5
ak;(z) = || ak;(2)]l,

ax;(2) = | kj(1)e*" dr,

ax; and ay;, — vectors.

Thus the relation (5) presents a matrix of nxm unknown values Lk;;(z)
determined by the values Laxij(z) and Lyi(z). Applying now to Lk;;(z)
the reverse transformations of Laplace we obtain K;j(z). The presented
method can be applied for non-stationary systems.

If the object is stationary the formalism is simplified to

Fyij(w) = @(w)Fxj(w) (6)

where: F — Fourier’s transform

\

Fy;(o) = || Fy; (o) ||,

co

Fyj(o)= | yi(eordr,

Fxj(w) = || Fx;(o) || ,
inj((')> — f X (T) e"l.(’)‘[ d'[ i

From m experiments we find the sought nuclei g¢ij(w) (2), If m = n =1
then it is particularly worthwhile to consider two cases

K, (&)= a,0" (&), n=0,1,...,1, (7)
Ky (&) = ad(&) + ki1 (&), (8)
where:
0"(&) — n-th derivative of delta function,
a, — constants,
k°11(¢) — function of limited oscillation.

The first case is reduced to the equation
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d x d-lx,
y1:alﬁ+al-1gﬂ_*ll‘l“---+aox1- (9)
The second case gives
Y= agX; + | K (t — 1) x,(7) dx. (10)

This case, determining the relation of ex. strain (o), deformation (¢), is
reduced to the finding fo the nucleus k;;(%) or the corresponding spectral
density ¢q;(w).

The relation (10) allows for the utilization of the information theory
in the identification of a body, and k;; plays here the role of the memory
of a filter. Of course the error in the evaluation of the model of body
will be the lower the narrower the transmission band of the filter, and
the closer to sinusoid the signal x(t).

Ex.
Y(t) = yo(t)+ eyi(t), T(t) = To(t) Texs(t), e K 1 (11)
where:
Yo, Ty — determined functions,
y; and r; — random stationary functions.

For the determination of the transfer function @ it is necessary to
determine

k(&) = ko(&) Teky(§) (12)
where:
k, — determined part,
k; — random part.
Using (6) we get
F@) =310 = 30@) =31(0) — | kot —7) () dt (13)
k() =] G(E— ) f() de (14)

where:

1 t eiw(@—r)

277_:[,0 Fx,(w) v

G(c—1) =

Fx,(w) = f x,(7) e dr.

—_—c0
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The expected value k,(¢) is

/

Eky (&)= [ G(¢—1)Ef(qde (15)
The correlation function for k,(¢) has the form

Kz, 1) = f f Gty =) Gt — o) E[ f(t)) — Ef ()| [ f(z) — Ef(z,)| dr, dr,. (16)

—co —oco

In this way for the case of normality of the process the problem,
after the calculation of the first two moments (15 and 16), and after the
determination of the transfer function of the system, is fully solved.

The transfer function determined the form of the differential equa-
tion connecting ex. strain (y) and deformation (x) in (time, while the two
calculated moments allow to predict the probability of the realization of
this model. One more thing requires attention in this action: the entrance
(x) and the exit (y) are presented as sums of the determined and the
random parts. Now this determined part is just the element of the
structural analysis, a very important thing from the point of view of
the possibility of getting to know this process. It is just the transfer
function of the system that determines it.

Continuing further the problem range of the structural analysis it
seems worthwhile to point to the equation

da’y(t
LD |k y(n) = f [y<z>, bl >] + v (2) (17)
where:
x(t) — random stationary differentiable process
v = 0.

dy (¢ : :
This equation is important because in its part uf [y (D), J:i( >} it contains

the problem of movement damping. The problem cof friction is widely
discussed in rheology.

Equation (17) can now be solved also for the case when x(t) is a non-
-stationary function (by using the function of spectral density dependent
from time).

This case, although very important from the practical point of view,
does not bring any particularly important moments to calculation
schemes. Below we present a sketch of solution for a case when the
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density of probability of solutions of the equation is not normal.
A considerable attention is paid in the mechanics of agricultural machines
coercions, and it is often assumed that they must be normal. But from
the experimental point of view it does not necessarily have to be so.
The normal process takes place when the effect occurs as result of the
summing up of infinitely many uncorrelated increases. A process of such
increases is not differentiable. Thus the process x(t) is influenced by the
number of components that can be correlated to one another. This is the
cause for accepting an anormal distribution for x.

The equation (17) is apart from that nonlinear, because of the element
of friction. The solving should be started from linearization. Linearization
is done by decomposing all the nonlinear functions included in a given
equation into Taylor’s string in respect to fluctuation. Let’s adopt

Y=Y Y1 = Y (18)
which then gives
¥, + ooy, = tf [y13) + puvx (19)
yl — Yo
which can be presented as
dy,
E - F (ypyz: X5V, :u) (20)
i=1,2
(= const.
vy = const.

Linearization should be done in respect of the value

X0 —x — e, Yy = i — My (21)

m — mean value.
Considering the fact that mean value constitutes a main part of the
function for the first two terms of the Taylor’s string, we obtain

F; [ylayzs Xy s L] — [my T.yb m;v2 +.y23 my + x% 1, ‘] =

5F
~ F, [my,y my, s 115 ] + 2, it % . (22)

J=1 Yy

Since

my; = 0, Mo =0 L (23)
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and applying to the obtained equations the operation of average values
we obtain the final form of the equation

y—u (5:@ {f[my, m; ]}y - (ﬂ &iy {f[my, m; ]} - wﬁ)y -
)
om;,

o s o
— uf [my,m; | = pvx. (24)

The above equation can be treated in two ways: as an equation of con-
stant coefficients (assuming that the mean value from experiment is
a determined function) or that the equation has random coefficients (in
the population of experiments the mean value is a random function).
Fort =0

Y = Yo T Ur (25)
where:
Y1 — particilar solution of heterogeneous equation
Yo = v 2 CiYis
=~ J
c; — constants determined from the preliminary conditions of given
distribution densities,
Y; — system of linearily independent solutions of homogeneous equ-
ation.
Obviously
y=cy1 Ty + yL
Marking
%)
Q,=—u o, {f[myn my ” >
0, = — o= flms i | — o]
2 é‘my Y3 45y >
%) a ) . o
H=mj; —yu om; {f[my: Hty J} — m, lf[my: my }}my + uf [le, y j .
We obtain

5’ I Qly + 0,y = l‘u[/b v, H, x] (26}
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The function H should be treated as a stochastic signal usable (part
that is not the white noise). It may be that H will be the only compo-
nent of the function y. The above remark is significant because it makes
the notion of stochastic complex coercion more precise.

Since y; are linearily independent solutions of homogenous equation
the following conditions must occur

P{|a1y1+a2y2|:0}:1, (27)
Ellay; + a,3,]] =0. (28)
where:
o1, 0 — constants.

The problem then has two preliminary conditions y (0) and y (0) ha-
ving their own distributions, and so at the determination of the distri-
bution function of equation (24) there is the necessity of considering the
distribution of constants.

There is a considerably large group of media characterized by a high
regularity, for which coercion is negligible, and the preliminary condi-
tions are very important. For such media the distributions of solutions
of their equations will be a function of the preliminary conditions. It
seems to the point to take a closer look at these solutions. The problem
of the determination of the probability density of solutions of the move-
ment equations seems as follows:

J‘)J' = F; [szypyz]: J=12 (29)

2;(0) =57 (7) (30)

where: 4?(,)— random variables of a known total distribution of pro-
bability.

y is here an elementary occurence. Basing on the mathematical descrip-
tion of elementary occurence we should indicate what is meant by it in
a concrete case. Then we should find the transformation of random

wector ¥° (y) — describing the preliminary conditions) into the vector
3; (t, v) — describing the solution of differential equation. '

3 (57) = gilt = 16> 1,30 (7): 32 ()] D
where:

g; — the sought deterministic functions. Now if gJ for every j will be
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a unequivocal solution of the preliminary problem (29) and (30) in which

0 0
the preliminary conditions have the total probability density foly1(»),y2(»)]
and the functions will be continuous and will have continuous derivati-

ves _jé’z__ k = 1, 2, then the sought density of probability will be
oV (7)
0 (A5 hz)
[) b - b] 32
. iyl =18 0%a800] | 55255 (32
where: h; = [g;]~! (reciprocal of function g), i.e., for every t it is
() =I139:00: 3. (] (33)

If however the system of equations (29) has a complex form and it is
not possible to obtain explicit solutions, the probability density can be
determined otherwise. The Liouville-Gib’s equation is applied and we
obtain the distribution

eyl =1, [y?(;'),y‘z’(?)]exp{—][ o5 (5 lo38008s)

%o 081 |
OF, (T: toigpgz) ] l .
dr \. 34
+ 5, ] (34)

In order to -obtain the distribution (34) certain conditions must be
met.

0 —0

Let the point M, of the co-ordinates (yl, Y2) = y be the initial point.
-0 0

Y will be the realization of the random vector y (y) of the preliminary
conditions. The probability that M, belongs to a certain set S, in phase
space

P {Mo S So} = j:gffo (3% 22) Y, dy3, (35)

where:

fo (32, y3) is the joint density function of the initial conditions, about
which we should assume that it is given. So there arises the question
where do we take it from. Now there are two methods mutualy comple-
mentary, through investigating experimentally the material constants
and thiough mathematical modelling. For the time t > t, it will be

P(M,€ S.)= [ [f(33,)dvs,dy, (36)

where: f(y,,y,) — joint function of the density of random variables vy,
and y, at the moment t.
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Since movement is ruled by the deterministic laws

o)Ay sdys = g [f(3153,) dv1,dy,. (37)

o t

Hence we obtain

_a_f 1 (V[Fl(yl)yzx)lb 1’)] + 6f[F2(y1)y23xJ/l)7')]
5[ i 5y1 5y2

= 0. (38)

Solving the equation (38) we obtain the given above result (34). The
equation (38) was given, not because from it is easier to obtain the dis-
tribution than in the case of (32) but because, it is valid in the statistical
theory of irreversible processes. Apart from that, as it was already men-
tioned in the case of difficulties in solving the equations (29), the equa-
tion (38) is easier for numerical solving.

In the case when a body or medium we investigate is not characte-
rized by a considerable regularity, and such a medium is staw mass, and
coercion is not normal for the finding of the distribution density of the
solution of differential equation (17) we can utilize Edgenworth’s string.

|‘S:
w

f(3le) = (P(yll)—gl‘ o (511) + g7 (5= 3 )0 1) (53 0 o1 -

51' (ﬂs 102‘3) S (y)t) _35/13(#4 ) ) (ylt) — 80( )¢(9)(ylt)+... (39)

where:
@ — normal distribution,
u, — central moment,
o — standard deviation.

¢ ¢ .y1(%) yz(%) | y1(%‘) yz(%)

_ ) (1) ya(t) | y1(?_) yz('f)
glake [ o f y1(T-) yz(.T) Y1(7) ¥2(7)

y1(:") yz(;)
A2 %D Vg (27, 1) dedi... dr (40)
y1(7) ¥,(7)

¥u(1) 3:(7)

where: K — correlation function.
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The distribution (39) is different from normal, and the difference is
greater as higher are the values of higher moments.

Now we should answer the question how to make more precise the
non-linear element occuring in equation (17). This element can be mo-
delled in the way presented below.

We must assume that the friction force T depends on the relative
speed V of bodies in friction. On every elementary surface dA of the bo-

dies in contact of the surface A. there occurs the unit tangent force z.
It occurs at determined time moments, and we can assume that between
these moments its value is zero. For the sake of generality of considera-
tions we may assume that between these momentary points the values
of the unit forces may change their denominations into reverse. The part

of surface on which 7 >> 0 is the surface of actual contact A, at a given
moment.

So A. > A,

T=[tdA= [1,dA

a0 4 (41)

7, — mean value of unit force in the area of possible contact of two
bodies,

7, — momentary mean unit value (actual).

T T :
TCZZ, T,:Z, IT=A.1. = A; . (43)
If we assume that the relations
A .
= 2=p(V) (44)

present a dimentionless statistical characterization of friction, it is possi-
ble to interpret them as the probability that all the points comprised by
a given contour are media of transmission and transformation of energy.

Vector of speed V can be discomposed into two ortogonal components
V =V.+V,
Thus
P (V) =P (Va) P (VI V). (45)

The conditional probabilities V, and V, are independent e.g. p (V4/Vy) =
= p (V,)p(Vz). In the general case p(Vy/Vz) £ p(Vy). However for straw
mass we can accept the independence of directions. In order to assign
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numerical values to the relation (45) we should find the function ¥ (V;
V) fulfilling the equation

P(Vy/Va) = ¥ (Vax; Vy) p (Vy),
or

p(V)=% (Vi Vy) p(Va), p (Vy). (46)

The function ¥ must be positive and finite. Let ¥ be the upper
limit of ¥

~

Y =sup®( Vi ¥s)

then

HV)<F(v) = ¥p(V)p(V). (47)

Since || = \/o,2+0,2 then

Flyv2 + %) = ¥p(V)p(Vy)
The solution of this function equation is the function.
p(Va) = ne®’. (48)

If p (Vz) << o then the indetermined coefficient a should be negative and
have the value

o = __a2
and hence
p(Vi) = ne=aVs= 3/417: - % (49)
From the last equation we find
T = Az, — A, = nAae @V s (50)

The friction coefficient, at a khown normal force N, and for the value

Pn= %]— (unit loading on the possible surface of contact) will be

= n%e‘a’V’. | (51)
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The values 7, can be determined on the basis of the changes of kine-
tic energy of material body. Now this energy during movement changes
into heat, which is in the contact layer of the thickness h. Considering
the statistical character of the process of dissipation of energy of bodies
in friction we substitute the surface densities with their mean value

p1+p
p="7 (52)

Assuming that the momentary tangent unit force is equal to the chan-
ge rate of unit kinetic energy, we get

Cd (V2 1ldp o, av

2
: : dp av 1 [dp,

0 - 2

Assuming further p° = ds and 7= p, 7 2 ( 7 )V

we finally get

ir — Q’Vz = To (53)

and
f = :;1 (1o + pOV2) eV, (54)

In order to determine the friction coefficient more accurately we
should take a closer look both at the surface phenomena accompanied by
local changes of temperature, and at the movement of the medium
which fills the space between the two bodies in friction. A characteriza-
tion of this medium is, in the case of cereal mass, almost impossible.
So there remain model, ex. analogue, investigations. Assuming that re-
sistance is viscous the value of the additional force will depend, apart
from speed, on the thickness of the contact layer h and the surface area
of possible contact 4., and will be

lefill-Ac'U (55)
_.y 1 4., ¢
And hence we finally get
_n r1r2y -0tV i
fT—Pn(To+pV)e i—.kan.
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For a still fuller picture we should expand the formula (56) with ele-
ments containing term for the maximum actual pressure on the surface
and the temperature of the medium between the bodies and the tempe-
rature of the surface itself.

Accurate solutions can be obtained through solving the equations of
conductivity in elastic medium at assumed peripheral conditions resulting
from the mechanics of movement of the medium.

The composition of the friction element as to both the interial and
exterial friction in actual conditions is complex and as it was presented
in the preceding two examples it may involve different difficulties of
mathematical nature. Often then it is profitable to simplify, even consi-
derably, the model, so as to obtain a solution with the help of which we
can expand the notion apparatus for further expantion of the problem.
As an example we can use here the model of friction propsed by Van
der Pol. Despite the fact that many years have passed since the moment
of its creation it is still, as can be seen from literature, utilized in pro-
blems often very remote from friction. The equation system (19) equiva-
lent to the homogeneous equation (17) will take, for the Van der Pol case,
the form ”

Vi =3
¥ =—¥— ¢ (¥ — Dy, (57)
where:
wl=1
fi=— g

f[ypyz] — (y% — l)yz'
We make the following approximation |
Viy. > a, + a1y T &Y, (58)

where: a;, a, constants chosen in such a way that

E(yiy, —a, —a1y; — a,y,)* = min. - (59)
Solving the presented variation problem we get
a, = E[(* — 1)y,] —a&,E (¥y) — &E(32) (60)
g E{(y%— l)yz—E[(y%— 1)3’2]%[3’1’_5(.3’1)] | (61)
132 _

[y —E()] & |y, — E(.yi)l
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a,, o — vector of constants,
@ — Kronecker’s product of vectors.
Hence
E(y? ¥3)
a, =0, a,=0, a,=—=" (62)
E()

Now, passing on to the heterogeneous equation let us assume for the
sake of simplicity (otherwise than before) that coercion is a normal sta-
tionary process of mean value equal zero.

If ¢ € 1 then y,, Y, are normal processes, and so

E(%15%) = E(3)E(53 (63)

(Y1, Yo, must be independent).
From (63) follows

@y = E( yf) (64)
Ey}= [ds [ G(s)G(s)R(s—s")ds (65)
where:
G — Green’s function,
R — correlation function.
The Green’s function must fulfill the equation
d , ; ;
C—EG(I——l)—(al—az)G(t——t)zlé(t——t) (66)
where:
I — unit matrix,
6 — Dirac’s delta function.
For the case considered
&
G(t) = wil,e 2 Sin w,t (67)

where:

1

wo:[l —%sz(az—l)z]’z

=1,t>0;I;,=0,t<<0
In the case when R, (t) = & 6 (t) (x — white noise)

12 — ZPPNR z. 203
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1
E) =82, — %

a2=%[1+l/1+262] (68)

&

From (68) it can be seen that if

Gﬁ—m);(w—n. (69)

&

For the system (57) to have periodic solutions on the basis of which

a general stationary solution can be constructed the condition (69) must
occur.

For R.(t) =R, — Bl B>0 (70)

In further analysis of friction we should also consider theories totally
deterministic.

Assuming that ex. in straw madium both the interial and exterial
friction can have a mixed character, appropriate rules of friction must
consider the dependence of the “dry” and “viscous” components on speed.
As it is shown by experiments dry friction decreases, and quite rapidly,
with the increase of speed, while viscous friction behaves reversely.

In literature it is possible to meet a model of friction which is based
on the following principles '

— there is a large difference between the kinetic and static dry fric-

tion,

— kinetic dry friction is constant,

— viscous friction increases linearily together with speed.

This model is much simpler than the presented Van der Pol model.
However, it has a considerable fault; it does not explain the situation at
the beginning of the system at all. Even the assumption of non-:linear
dependence of the viscous friction coefficient on speed does not help.
While in the zero range we observe a considerable value of the friction
coefficient (close to the static coefficient) and then either an initial decre-
ase of its value and then an increase, or increase, decrease, and increase
again. Exact mathematical explanations made on the basis of physical
factors is rather complex and does not seem to be complete asy yet. That
is why approaching the problem in the phenomenological way it is po-
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ssible to approximate the relations quite accurately with differential
equations.
Very universal, because of its constants, is the relation

T= — cjfe (7D

S0 far in our considerations we have dealt solety with structural
theories. Below we present a structural model. It is a rheological model
of cereal mass moving in a slot. The aim of these considerations is to
turn attention to certain elements of the investigation process which ha-
ve a strictly methological character.

In a very wide approximation a situation such as the one presented
below may occur in the chambers of presses, at a certain place on asan-
gent plane to the screw of the worm in the slot between the edge of the
worm and the cover, and in some cases in the slot of the threshing drum.

The plant material in a slot can be described by the position of fibers.
If the material consists mainly of straw we can approximate such a me-
dium with the standard model. This model constitutes a combination of
the models of Kelvin — Voigt and of Maxwell. Because both the models
lead, in respect to damping, to dynamic problems in effect of which we
obtain converse results, it is possible to approximate the investigated me-
dium quite well by an appropriate choice of values of component para-
meters.

The Kelvin — Voigt model is a linear one. The plasticity limit intro-
ducing non-linearity into a system does not occur here. The model is
good in cases when ccercion is of not too high frequency. Of the medium
we describe with this model we must know what is the form of the func-
tion of strains o = o (t). This is necessary for solving the basic differen-
tial equation. :

Then we assume that preliminary deformation is zero. This is a very
important remark, since in the case of a working process of whole ma-
chine we must assume that on entrance to a successive mechanical sy-
stem the deformation procured earlier should be treated as “natural”.

At a constant strain deformation increases in a continuous way to
a determined asymptote. In shock cases deformation increases actualy co
fast that already from the initial moment it is possible to assume that it
is the same as intended.

Apart from that the body has the property of creep and also the pro-
perty of elastic delay. But it does not have the ability of relaxation.
Apart from that the model has dissipation properties determined by the
force of damping in proportion to the deformation rate, which is in
accordance with the assumption adopted in equation (17).

12#
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The second model is a combination of elasticity and a damper. The
model is applicable also in a certain range of frequrncies. A medium of
the character of Maxwell’s body has the ability of relaxation, which is
characterized by therate of strain decrease at a constant deformation. In
order to solve the basic differential equation for this model we must
know the function of deformation.

The preliminary condition for this equation is the sudden obtaining
at moment t = 0 a determined deformation. This leads to the establis-
hing that at the initial moment only elastic deformation will occur. The
presence of relaxation will cause that the deformation decreases conti-
nuously. This model has also a function of creep, but it does not have elas-
tic delay. Both the models become particularly simple if we deal with
only formal changes. As to vibrations the two models differ in that in
the first one damping is in direct proportion to frequency and in the
other in reverse proportion.

In the presentation below we give a basic mathematical description
of these models. Basing on data included there we present a probabilistic
model of the problem. The problem concernes the finding of the density
of distributions of solutions of rheological equations of state. In the K—V
model we look for deformations and in the M model for strain function.
Both the values are random variables and therefore we must determine
the distribution of density of probability describing the changes of their
values. If we assume the simplest possible model describing the changes
of ¢ or 0 as an effect of cumulation of many causes determined by
external coercion and by the structure of the material, we will obtain
a certain scheme of random erring. Ex. the state of medium being
between two bodies in friction depends on many factors and even if we
determined all od them in detail we would not find out what relations
occur among them and what values these parameters can adopt.

Let then the sum of effects caused by external and interial factors
in relation to the discussed random variables be

S _ | ' .
(GAE)—x1+x2T....+xn. ‘ (72)

This sum can be stationary or non-stationary. For the sake of generality
of considerations we can assume that the argument of function S does
not necessarily denote time.

Let in the range 0 — t be n subranges, then the increase

S(HS(0) = > [SCke + 1) — (ko). (73)
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If we divided ex. a volume of grain into the n parts and investigated
their influence of their total resistance to shock (this will be function S),
then at n—>oco we would obtain an exact picture of the resistance, and
not its approximation. Such is the physical sense of the sum of random
variables.

For physical purposes it is, however, enough to adopt n<loco. Let us
assume for the beginning that x;, are independent. This is not in
accordance with the remarks we have made earlier. We treat then the
assumption as a hypothesis which can be experimentally check out. This
assumption is not necessary, but if it is not fulfilled it greatly complicates
the problem on the mathematical side. The fulfillment of the condition of
independence causes that this is a Markow’s process.

Another restriction

Xp = l[ —h plxr=—h)=p, (74)

where: p — probabilities
p; TPy TP = 1. (75)

Thus ex. strain (S ) is a result of cummulation of k effects, each of
which may with a different probability be h;—h and 0. This last case
indicates a lack of change of state. Since S, is realized from state S,(0)
to S,(t) then the number of all temporarystates should be set for n, and

then 7—2: 7 . Next let us assume that for every argument 7, the value

Ty is realized. The arguments 7x will then form the string

7, 27, 31, ... (76)

with the probabilities p;, ps, p3 respectively.
This then is a case of oscillation of the axis of strains (in the case

in question). We should note that for the fulfillment of preliminary
conditions the start must take place from the indicated argument. From
the probability calculation we know that the argument may be zero for
every case, since if it was otherwise, because of the occurence of some
strains already then, they could be deducted as a constant value.

The step of ofcillation is then 7z and the increase of the value of
argument (*h, 0).

The first task will be the determination of the probability
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of the occurence that for the argument t = nr the value of the random
variable will be x = kh. Here n = 1,2,... and k=0, £1, £2, ... In turn

Sp.ican adopt the value kh only in the following three mutually
exclusive cases

{S’l — (k T l)h/\xh+1 = h} \/ {Sn = (k _l_ l)h/\xn—'—l - h} \/ {Sh = klZ/\xh+1 =( 0}
79)

Uh+1,k — P1uh,k—1 + DoUnk+4 +P3un,k- (80)

The products in the sum come from the fact that the occurences
described by the probabilities p; and u, are independent. For n =0

uo’():l k=20

(81)
uo,k: 1 k;éO

The differential equation (80) and its preliminary conditions (81) give
the solution of the posed problem. The solution will however be more
comprehensible if we pass from the differential equation to a differential
equation. In order to do this we must substitute the probabilities by
corresponding densities of probability. This may be done if 7 is very
small. L.e.

uh
uli,n: - 2 { vh<< Sn*l/,u}l} = Upv+1 + Up,v+2 T T Uy | = f”([:x) dx (82)
vh
: Un R
Un,r, == u(nt,kh)h, u(nt,kh) == o (83)

From the physical point of view the function u(t,x) will be at least
twice differentiable.
Equation (80) will take the form

S u(tt,x) = plu(t?x—h)+p2w(t,x—l—h)+p3u(t,x). '(84)
Taking p; = 1—p;—p2
w(t+7,2)—u(t,x) = —py[u(t,x)—u(t,x—h)]+ pafu(t,x +h)—u(.x)].
From Taylor’s series we get
ou(t,x)
or

2u(t,x)  ou(t,x) 1 u(t,x)
_a_xz__.O)—l—...— T T+2—_—8t2 “ ...

n ou(t,x) 0+ Pu(t,x) 22 ?u(t,x) 00+

1
u(t + 1,x) — u(t,x) = ox 21 o2 orou
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Analogously
3 2
u(t,x — h) —u(t,x) = —-”;—‘;x)hjL—;%;;x) R+ ..
0 2,4,
u(tyx + h) — u(t,x) = u(a—tf)h—}—%a—uagfg—ﬂhz e ns

Since 12—0 then after the transformations we get

u(tyx) . (pr—p)h  2u(t.x) + 1 (pr+p )P Pu(tx)
o T ox 2 T ox2

L (84)

P

1—T‘Dzh2:a—mean transfer on axis for a unit of argument.

Instead of the preliminary conditions (81) we demand now a detailed
solution (84) which at t—0 is convergent to 6 Dirac’s function, i.e.
u(t,x)—>0 for x == 0 and u(t,0)—-+o0 but in such a way that the integral
of the function u is 1 for every t > 0. At adequate values a and b there
is exactly one solution of the equation (84) that has this property and
it is precisely this solution that we can adopt as an approximation of the
distribution of probability of random variable S, for large n.

The equation (84) can also be obtained at more general assumptions.
Ex.

where:

T =0, +1, +2 +.. +m, (85)

Then a and b will depend on x, ie. the distribution of probability
of every value of strain will depend on the position on the axis of strains.
Carrying out a consideration similar to the above we get

ou(t,x)

(0) 2 faeu(t0)] + 3 oy (BG(E0)] (86)

Since strains can adopt only values from a determined range, this
fact should be included in the peripheral conditions. Rheological equations
of state for the Kelvin—Voigt model and for Maxwell model can ke

written as
sr Lo Lo, o4lo—E@ (87)
T n -7 T

,E— constants (there is also a way of solving the pr/oblem

where; 1, —1
(a

when the constants are not ex. mean values but are random func-
tions), .
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o(t) and &(t) are for the first and second equations respectively the
random functions of independent increases alternately serving as coer-
cions.

For the K—V equation and o for the M equation are also mark
processes if certain known conditions are fulfilled.

In order to calculate the coefficient ¢ and b of the equation (84) we
should integrate the equations (87) in the ranges (t,t+1)

t+7 t+1

()0 = g [ ot~ [ e (58)
t41 | t+7

x(t+17)—x(t)=E f e(t)det; — —Tl- f o(t,)dt,. (89)

The coercions must have a certain expected value.
Assuming from Table 1 from the peripheral conditions respective o
and &o

Eol[x(t + 1) — x(8)]] :e}:’;l (6, — &)1
hence |
Apy = % (6, —¢) (90)
(t — rheological parameter)

m4u0+o—x@]

1 ;
W= —?(eo——o)r

1

am =— (e, — o)

t+1t+7

E;w][x(t—i-r)——x(z)]z X=¢ :izf f Ko (t, — t,) drydr, 9D,

n

|

Assuming for both cases K(z) = o(7)

. - (92)

bkv:ﬂ_z
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Eul[x(t+1) —x@)]?|x =0} = bu = E? (93)

where: E — operator.

If the coefficients ¢ and b do not depend on the argument ¢, then
the equation (86) assumes a stationary form

[a (x) u(x) ] — 5 7 [b (x)u(x) ] (94)
the selution of which is the function
u(x) — S opx l 2 alx) dx l (95)
b(x) b(xy)

where: C — the constant of distribution.
For the models in question we will get

Uk, (&) = cn’exp 2f T de,y.
€o 77

Since ¢g = 0

o (€) == cexp {i (20, :— )} (96)
un(5) = £ eXp 2j G 2‘“1) dow].
Since oy = Ee, G
(o) = geexpl G exp L (2o — o). 1)

A helpfull thing in this respect will be the determination of the mean

Z and the variation o,2 for ¢ and o. Explicit solution can be obtained in
the case when « and b are linear functions ¢ and o, i.s.

a(t,e) = a-+ a6 a(to)=ad, + a0 (98)

b(t,e) =B, + P& b(t.o)=f's + B0 (99)



186 J. HAMAN ET AL.

Applying the apparatus of characteristic functions and elementary
equations of first degree we obtain

;(r) = —Zﬁ (ea‘t—— 1) + aca‘t,
2a'st a’st
a(t)—— ( —1) +e” (100)
2 .
7 (1) =7ﬁ;—(e2 1),

oo(1) = 2a 4 —1). , (101)

1

For the two rheological models in question

a ——._l_o' a —_L ’ —i ’ — — ——
o = 7 To> &1 T:ao—,l_goaaq-‘ "
ﬁo 377'2‘3 )81:0: ﬂ’o :7'E29 ,3,1:0-
Hence
_t "
e(t)=—o0, (e f—DH4e °,
L __r
c()=—c¢e (e * —1)4+oe °,
2t
2 T
Gs(t) :_’2—’75(3 T -—1),
2 t
o (t) = —fl(e—ZT —1).

On the basis of the last relations we can determine the constants in the
distributions (96) and (97)

Cyp? = 1
V s —;—2(1 —exp [—2t771])
1 ‘
¢ v — (103)
“ |/m: n? (1 —exp [— 2t7] ).
e 1

E?  y/7E*r(1—exp[—21r1)], .



PROBABILISTIC ASPECTS OF RHEOLOGICAL MODELS 187

_ E
V nr(1—exp [— 2t7—1] ).

M

(104)

If we worked out similar calculation schemes for all the commonly
known rheological models then we could, on the basis of experimental
data, choose the most probable structural model.

Making measurements it is possible to determine the parameters of
their distributions and in the case of normality to compare them with
those calculated theoretically. Theoretical calculations similar to those
presented above should be done for all commonly used structural models.

As an appropriate model for a given medium we should treat that
which gives the greatest from the point of probability agreement between
theoretical calculations and experimental data. The agreement could be
investigated with the help of standard tests.

Coming back now to the example of the rheological model of straw
mass it seems to the point, because of the contents of other plants and
other organic elements such as broken and often crumbled leaves, to treat
the medium as two-phase and to add in series Maxwell body to the
standard model. Such a construction of the model would be argued for
by the fact that the second phase will have a much higher elasticity and
that only damping wille be of any greater influence on the whole medium.
Of course equations will be here much more complex.

Recapitulating we should state that presented problem of applying
stochastic processes in the finding of a rheological models is important
because of the probabilistic characteristics of the medium.

The finding of the model with deterministic methods is in practice
rather limited because of ex. great distribution of constant values, the
measure of which is not in this case considered. The present paper is
an attempt at indicating this problem and its main aim is to initiate
discussion of it..
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PROBABILISTYCZNE ASPEKTY MODELI REOLOGICZNYCH

~

Streszczenie

Generalnym zalozeniem pracy jest hipoteza, Ze nie istnieje mozliwo$¢ napi-
sania uogo6lnionego réwnania konstytutywnego dla ciata scharakteryzowanego spre-
zystoécia, lepko$cig i plastyczno$cig o lokalnych rozktadach statystycznych i roz-
norodnych zlozonych kombinacjach, a wiec takich, w ktoérych model reologiczny
jest funkcja polozenia i zalezy od nalozonych na ruch warunkow brzegowych.

Poszukiwanie modelu reclogicznego jest sprawg konieczng z punktu widzenia
projektanta urzadzen, dla ktéorych oSrodkiem powtarzanym jest wlasnie materiat
roslinny.

Jest to sprawa o tyle istotna, Ze nie mozna moéwié o optymalizacji urzgdzenia,
jezeli nie zna sie rozkladéw rozwigzan konstytutywnych medium.

Poszukiwanie modelu reologicznego o$rodka pracujgcego w danym uktadzie
mechanicznym mozna realizowaé¢ wieloma drogami, jednakze wydaje sig, ze me-
tody stochastyczne sg tutaj najbardziej wlasciwe.

Metoda stochastyczna w tym przypadku zapewnia znalezienie dla danych wa-
runkéw najbardziej prawdopodobnego modelu. Zalozeniem jej jest poszukiwanie
rozkladu polgczen: szeregowych, rownoleglych oraz szeregowo-rownoleglych posz-
czegblnych czlonow sktadowych modelu. Poszukiwanie to mogloby byé realizowane
na drodze bladzenia po karcie, ktorej wezlami sg czlony reologiczne, a przejscia
s3 zmiennymi bedgcymi szumami.

Z=U+YV

gdzie: U — jest czlonem deterministycznym, V — czlonem losowym.

Rozklady rozwigzan konstytutywnych uzyskiwaé mozna z parabolicznego row-
nania typu réwnania Kotmogorowa, ktorego postaé uzyskuje sie z procesu big-
dzenia.
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Wstepne informacje o procesie wchodzgace w wektor U sg natury fizycznej
i mozna je uzyskaé¢ na drodze bezpoSrednich pomiaréw wytrzymato§ciowych.

Problematyka przedstawoina w pracy ma charakter poszukiwan i nie stanowi
uniwersalnej metody dla wszystkich tego typu problemow.

. Xaman, A. Mapuunax, 3. CapKoscKuii
IIPOBABUJINCTUYECKHME ACIIEKTBI MOJIEJIM PEOJOITMYECKUX
Pe3womMme

TeHepaJbHOM ITPENIOCHIIKOM paboThkl ABJIAETCA TUIIOTE3ad, YTO He CYIIECTBYET
BO3MOXKHOCTb HaIucaHusa OO0O0OIIeHHOI'0 ypaBHEHMsA, KOHCTUTYTUBHOIO AJIA TeJja, oXa-
PaETepPM30BAHHOTO YIIPYTOCTBIO, JMIIKOCTBIO ¥ IIIACTMYHOCTBIO € MECTHBIMM CTATU-
CTUMYECKMMI pAacIIpefelleHNMAMY Y Pa3jIMYHbIMM B3aMMOKOMOMHALMAMM, 3HAYUT, Ta-
KMMU, B KOTOPBIX peojiormyecKas MOJeNb SABJIACTCH dyHKIIME IOJOXKEeHMUA M 3aBU-
CUT OT HaJIOXKEeHHBIX Ha ABMUIKEHUe 0eperoBblX yCJIOBUA.

IToucKM PEOJIOTMYECKON MOJeln SBJIAIOTCA IIPOOJEeMON, HeOOXOAMMOI C TOYKU
3peaus IMPOEeKTUPOBaHMSA ITPUOOPOB, AJIA KOTOPBIX I[IOBTOPAEMOII CpEeAoil ABIAETCA
MMEHHO paCTUTeJIbHbIN MaTepuall.

OT0 — HACTOJBbKO Cyl[eCTBEHHasa MIpodJjeMa, YTO HeJb3a TI'OBOPUTH o6 omTmMma-
an3aumy npudbopa, eciam He MNI3BECTHbI pacnpenéneﬂma pelleHnii KOHCTUTYTUBHBIX
yPaBHEHUIT Meauyma.

TIoMCcKM pPEeoJOTMYEeCKOM MOAENN CpPpenrpl, paboraroiieil B AaHHOM MeXaHM4YeCcKOon
cycTeMe, MOTYT OCYILEeCTBIATHCA MHOTMMM IIyTAMY, ORHAKO, Kaxercd, HTO CTOXaCTN-
yecKye MeTonbl ABJAKTCA TYyT HaudoJee MOAXOAAIIVIMNA.

CroxacTUUecKMii MeTol B 3TOM CcJydae II03BOJIAET HalrTy Hauboiee BREepPOATHYIO
MoneNdb A NAHHBIX YCJHOBWL. IIPeANOChUIKON AJA Hee ABJAITCA IMOMCKM pacmope-
JejleHusa IIOCJIeNOoBaTeNbHBbIX, IapajyeNbHbIX U mocJiefoBaTeIbHO-TTapaieabHbIX
COeMVHEeHMII OTAENbHBIX COCTABJIAKOLMX YJIEHOB MOAEJIN. DTy MoucKu moram 6 ocy-
LIeCTBJATHCA NyTeM OJNyXXAaHMs II0 PelIeTKe, y3Jbl KOTOPOM ABJIAIOTCA PEOJIOTMIec-
KMMM 4JeHaMu, a Iepexofibl — IIepeMeHHbIMY, ABJIAIIIMMIICA HIyMaM.

Z=U+V

rae: U — meTepMUMHMCTUYECKUIT YJIEH, V — caydamHbI 4JIEH.

PacripefesleHNs KOHCTUTYTUBHBIX DeIeHMiI MOXKHO IIOJIyHaTh M3 napaGoniecKo-
ro ypaBHeHMA TuUIa ypaBHeHMsa KOoJIMOTroposa, dopMy KaToOporo HaXOAAT B IIDO-
1ecce OaMyXaaHuAd. '



