PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 60 | 2 |

Tytuł artykułu

SDS-PAGE heat-shock protein profiles of environmental Aeromonas strains

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Aeromonas microorganisms normally grow at temperatures between 5°C and 45°C and therefore should have high thermotolerance. Thus it was of interest to find out whether A. hydrophila, A. caviae and A. veronii biovar sobria serovars respond to abrupt temperature changes with a heat shock-like response. To this end the present study was undertaken to determine whether Aeromonas species exhibits a heat shock response to different temperatures and time factors. The response of Aeromonas serovars to 24 h and 48 h of thermal stress at 25°C, 42°C and 50°C involved the synthesis of 12–18 heat shock proteins (HSPs) bands with molecular weights ranging between 83.5–103.9 kDa in the high HSP molecular mass and 14.5–12.0 as low molecular mass HSP. Electrophoretic analysis of the HSPs showed that the serovars do not cluster very tightly and also that they are distinct from each other.

Wydawca

-

Rocznik

Tom

60

Numer

2

Opis fizyczny

p.149-154,fig.,ref.

Twórcy

autor
  • Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
autor
autor

Bibliografia

  • Abbott S.L., W.K.W. Cheung and J.M. Janda. 2003. The genus Aeromonas: biochemical characteristics, atypical reactions, and phenotypic identification schemes. J. Clin. Microbiol. 41: 2348–2357.
  • Abee T. and J.A. Wauters. 1999. Microbial stress response in minimal processing. Int. J. Food Microbiol. 50: 69–91.
  • Abou-Shanab R.A.I. 2007. Characterization and 16S rDNA identification of thermo-tolerant bacteria isolated from hot springs. J. Appl. Sci. Res. 3: 994–1000.
  • Albert M.J., M. Ansaruzzaman, K.A. Talukder, A.K. Chopra, I. Kuhn, R.M.A.S.G. Faruque, I.M. Sirajul, R.O. Bradleysack and R. Mollby. 2000. Prevalence of enterotoxin genes in Aeromonas spp. isolated from children with diarrhea, healthy controls and the environment. J. Clin. Microbiol. 38: 3785–3700.
  • Alperi A., A.J. Martínez-Murcia, A. Monera, M.J. Saavedra and M.J. Figueras. 2010. Aeromonas fluvialis sp. nov., isolated from a Spanish river. Int. J. Syst. Evol. Microbiol. 60: 72–77.
  • Ausubel F.M., R. Brent and R.E. Kingston. 1994. Current protocols in molecular biology. 2nd Edition, John Wiley and Sons Inc, New York.
  • Beaz-Hidalgo R., A. Alperi, M.J. Figueras and J.L. Romalde. 2009. Aeromonas piscicola sp. nov., isolated from diseased fish. Syst. Appl. Microbiol. 32: 471–479.
  • Beutin L., D. Ullmann, D. Knabner, S. Zimmermann and H. Weber. 2004. Isolation and characterization of toxigenic Aeromonas from seafood in Germany 5th World Congress Foodborne Infections and Intoxications 7–11 June Berlin, Germany Federal Institute for Risk Assessment.
  • Bower C.K. and M.A. Daeschel. 1999. Resistance responses of microorganisms in food environments. Int. J. Food Microbiol. 50: 33–44.
  • Castro-Escarpulli G., M.J. Figueras, G. Aguilera-Arreola, L. Soler, E. Fernández-Rendón, G.O. Aparicio, J. Guarro and M.R. Chacon. 2003. Characterisation of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico. Int. J. Food Microbiol. 84: 41– 49.
  • Coburn B., I. Sekirov and B.B. Finlay. 2007. Type III secretion systems and disease. Clin. Microbiol. Rev. 20: 535–549.
  • Demarta A., M. Küpfer, P. Riegel, C. Harf-Monteil, M. Tonolla, R. Peduzzi, A. Monera, M.J. Saavedra and A. Martínez-Murcia. 2008. Aeromonas tecta sp. nov., isolated from clinical and environmental sources. Syst. Appl. Microbiol. 31: 278–286.
  • Eurell T.E., D.H. Lewis and L.C. Grumbles. 1978. Comparison of selected diagnostic tests for detection of motile Aeromonas septicaemia. Am. J. Vet. Res. 39: 1384–1386.
  • Figueras M.J. 2005. Clinical relevance of Aeromonas. Rev. Med. Microbiol. 16: 145–153.
  • Freeman S., C. Ginzburg and J. Katan. 1989. Heat shock protein synthesis in propagules of Fusarium oxysporum f. sp. Niveum. Phytopathology 79: 1054–1058.
  • Janda J.M. and S.L. Abbott. 2010. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23: 35–73.
  • Kaufmann S.H. 1992. Heat-shock proteins in health and disease. Int. J. Clin. Lab. Res. 21: 221–226.
  • Knochel S. 1990. Growth characteristics of motile Aeromonas spp. isolated from different environments. Int. J. Food Microbiol. 10: 235–244.
  • Korbel R. and J. Kösters. 1989. Epidemic deaths of wild birds after Aeromonas hydrophila infection. Tierarztl. Prax. 17: 297–298.
  • Kuijper E.J., L. van Alphen, E. Leenders and H.C. Zanen. 1989. Typing of Aeromonas strains by DNA restriction endonuclease analysis and polyacrylamide gel electrophoresis of cell envelopes. J. Clin. Microbiol. 27: 1280–1285.
  • Kusukawa N. and T. Yura. 1988. Heat-shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev. 2: 874–882.
  • La Rossa R.A. and T.K. Van Dyk. 1991. Physiological roles of the DnaK and GroE stress proteins: catalysts of protein folding or macromolecular sponges? Mol. Microbiol. 5: 529–534.
  • Lathigra R.B., P.D. Butcher, T.R. Garbe and D.B. Young. 1991. Heat-shock proteins as virulence factors of pathogens. Curr. Top. Microbiol. Immunol. 167: 125–143.
  • Love B.C and D. Hirsh. 1994. Pasteurella multocida produces heat shock proteins in turkeys. Infect. Immun. 62: 1128–1130.
  • Macario A.J. 1995. Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. Int. J. Clin. Lab. Res. 25: 59–70.
  • Majeed K.N., A.F. Egan and I.C. MacRae. 1990. Production of exotoxins by Aeromonas spp. at 5 degrees C. J. Appl. Bacteriol. 69: 332–337.
  • Marriott N.G. 1994. Principles of Food Sanitation, 4th ed. Chapman and Hall, New York.
  • Mauchline W.S., B.W. James, R.B. Fitzgeorge, P.J. Dennis and C.W. Keevil. 1994. Growth temperature reversibly modulates the virulence of Legionella pneumophila. Infect. Immun. 62: 2995–2997.
  • Merino S., X. Rubires, S. Kngchel and J.M. Tomas. 1995. Emerging pathogens: Aeromonas spp. Int. J. Food Microbiol. 28: 157–168.
  • Murray P.R., E.J.O. Baron, M.A. Pfaller, J.H. Jorgensen and R.H. Yolken. 2003. Manual of clinical microbiology 8th Ed. Vol. 1, ASM Press, Washington D.C.
  • Neidhardt F. and R.A. Van Bogelen. 1987; Heat shock response. In: Escherichia coli and Salmonella Typhimurium, vol. 2 (Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger E., eds.), pp. 1334–1345, American Society of Microbiology, Washington, D.C.
  • Palumbo S.A., D.R. Morgan and R.L. Buchanan. 1985. Influence of temperature, NaCI, and pH on the growth of Aeromonas hydrophila. J. Food Protect. 50: 1417–1421.
  • Schurr M.J. and V. Deretic. 1997. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol. Microbiol. 24: 411–420.
  • Statner B., M.J. Jones and W.L. George. 1988. Effect of incubation temperature on growth and soluble protein profiles of motile Aeromonas strains. J. Clin. Microbiol. 26: 392–393.
  • Volker U., H. Mach, R. Schmid and M. Hecker. 1992. Stress proteins and cross-protecion by heat-shock and salt stress in Bacillus subtilis. J. Gen. Microbiol. 38: 2125–2135.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-599f73db-7f98-4c03-be4d-b8ae36653d1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.