PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 3 |

Tytuł artykułu

The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Eruca sativa seedlings were treated with different Zn concentrations (0, 250, 500, 1,000, 2,000 µg g⁻¹ dried growth medium) under controlled conditions. The seedlings were harvested 20 days after Zn treatment. Physiological parameters, such as root and shoot length, fresh and dry weight, were measured and Zn content of roots and shoots was determined. Furthermore, various biochemical parameters were studied on E. sativa leaves: enzymatic antioxidants, such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and non-enzymatic antioxidants, such as ascorbate, non-protein thiols. Malondialdehyde, which is an index of lipid peroxidation, was assayed. Zn treatment did not have any significant effect on fresh and dry weights, whereas 500 µg g⁻¹ Zn increased root growth significantly (p<0.05). Zn accumulated in roots 2–8 times more than it did in leaves. Lipid peroxidation increased in proportion with the increase in Zn. Although a decrease in SOD and CAT activities at increased Zn was found, a significant increase in APX and POD was observed at 500 and 1,000 µg g⁻¹ Zn, respectively. In addition, an increase in the amounts of non-protein thiols and total AsA (Ascorbate) was observed with the increase in Zn.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

3

Opis fizyczny

p.469-476,fig.,ref.

Twórcy

autor
  • Department of Biology, Faculty of Sciences and Arts, University of Ondokuz Mayis, Kurupelit, 55139 Samsun, Turkey
autor
  • Department of Biology, Faculty of Science and Arts, University of Amasya, 05100 Amasya, Turkey

Bibliografia

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism oxidative stress, and signaling transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perene L. cv. Apollo). J Exp Bot 51(346):945–953. doi: 10.1093/jexbot/51.346.945
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. doi:10.1111/j.1469-8137.2007.01996.x
  • Cakmak I (2000) Tansley review no 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205. doi:10.1046/j.1469-8137.2000.00630.x
  • Cakmak I, Marschner H (1988) Enhanced superoxide radical production in roots of zinc-deficient plants. J Exp Bot 39:1449–1460. doi:10.1093/jxb/39.10.1449
  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathion reductase in bean leaves. Plant Physiol 98:1222–1227. doi:10.1104/pp.98.4.1222
  • Candan N, Tarhan L (2003) Changes in chlorophyll-carotenoid contents, antioxidative enzyme activities and lipid peroxidation levels in Zn-stressed Mentha pulegium. Turk J Chem 27:21–30
  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97)00115-5
  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832. doi:10.1104/pp.123.3.825
  • Cuypers A, Vangronsveld J, Clijsters H (2001) The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 39:657–664. doi:10.1016/S0981-9428(01)01276-1
  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876. doi: 10.1078/0176-1617-00676
  • del Río LA, Sevilla F, Sandalio LM, Palma JM (1991) Nutritional effect and expression of SODs: induction and gene expression; diagnostics; prospective protection against oxygen toxicity. Free Radic Res Commun 12–13(Pt 2):819–827
  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77
  • Gayor A, Srivastava PS, Iqbal M (1999) Morphogenic and biochemical responses of Bacopa monniera cultures to zinc toxicity. Plant Sci 143:187–193. doi:10.1016/S0168-9452(99)00032-1
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Khudsar T, Mahmooduzzaffar-Iqbal M, Sairam RK (2004) Zinc induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol Plant 48(2):255–260. doi: 10.1023/B:BIOP.0000033453.24705.f5
  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem J 210:899–903
  • Lowry OH, Rosenbrough JJ, Farr AL, Randall RJ (1951) Estimation of protein with the folin phenol reagent. J Biol Chem 193:265–275
  • Luo Y, Rimmer DL (1995) Zinc–copper interaction affecting plant growth on a metal-contaminated soils. Environ Pollut 88:79–83. doi:10.1016/0269-7491(95)91050-U
  • Madamanchi NR, Donahue J, Cramer CL, Alscher RG, Pedersen K (1984) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short term exposure to sulphur dioxide. Plant Mol Biol 26:95–103
  • Madhava Rao KV, Srestry TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cacanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128. doi: 10.1016/S0168-9452(00)00273-9
  • Mitler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Okamura M (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta 103:259. doi:10.1016/0009-8981(80)90144-8
  • Ozdener Y, Kutbay HG (2009) Toxicity of copper, cadmium, nickel, lead and zinc on seed germination and seedling growth in Eruca sativa. Fres Environ Bull 18(1):26–31
  • Panda SK, Khan MK (2004) Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Braz J Plant Physiol 16(2):115–118
  • Polle A, Otter T, Siefert F (1994) Apoplastic peroxidases and lignification in needless of Norway spruce (Picea abies L.). Plant Physiol 106:53–60. doi:10.1104/pp.106.1.53
  • Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12. doi: 10.1016/j.chemosphere.2008.09.069
  • Reichman SM, Asher CJ, Mulligan DR, Menzies NW (2001) Seedling responses of three Australian tree species to toxic concentrations of zinc in solution culture. Plant Soil 235:151–158. doi:10.1023/A:1011903430385
  • Rengel Z (2000) Ecotypes of Holcus lanatus tolerant to zinc toxicity also tolerate zinc deficiency. Ann Bot 86:1119–1126. doi: 10.1006/anbo.2000.1282
  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23:3–11. doi:10.1051/agro:2002073
  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126. doi:10.1093/jexbot/52.364.2115
  • Sharma PN, Kumar P, Tewari RK (2004) Early signs of oxidative stress in wheat plants subjected to zinc deficiency. J Plant Nutr 27:449–461. doi:10.1081/PLN-120028873
  • Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Safety 62:118–127. doi:10.1016/j.ecoenv.2004.12.026
  • Słomka A, Konieczny ML, Kuta E, Miszalski Z (2008) Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. J Plant Physiol. doi: 10.1016/j.jplph.2007.11.004
  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laere AV, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444. doi:10.1016/j.plaphy.2005.03.007
  • Souza JF, Dolder H, Cortelazzo AL (2005) Effect of excess cadmium and zinc ions on roots and shoots of maize seedlings. J Plant Nutr 28:1923–1931. doi:10.1080/01904160500310435
  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defence system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20(3):181–189. doi:10.1016/j.jtemb.2005.12.004
  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to a zinc stress. Chemosphere 59:1005–1013. doi:10.1016/j.chemosphere.2004.11.030
  • Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147. doi:10.1104/pp.106.082073
  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. doi:10.1016/j.chemosphere.2009.02.033
  • Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35(5):405–410
  • Willamil JMP, Pèrez-Garcìa F, Martìnez Laborde JM (2002) Time of seed collection and germination in rocket. Eruca vesicaria (L.) cav. (Brassicaceae). Genet Resour Crop Evol 45:47–51
  • Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidative enzyme activities in Thlaspi caerulescens under Zn and Cd stress. J Plant Growth Regul 48:145–155
  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-593947a8-a60d-48c8-ab85-b7e13ecaee9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.