PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 481 | 1 |

Tytuł artykułu

Relationship between jasmonates and ethylene in regulation of some physiological processes in plants under stress conditions

Treść / Zawartość

Warianty tytułu

PL
Zależności między jasmonianami a etylenem w regulacji niektórych procesów fizjologicznych u roślin w warunkach stresowych

Języki publikacji

EN

Abstrakty

EN
A relationship between jasmonates and ethylene in regulation of some physiological processes in plants under stress conditions is presented. Jasmonates are naturally occurring plant hormones showing various important biological activities in the regulation of plant growth development and in defense responses against a wide variety of abiotic and biotic agents. Jasmonates have been reported to control ethylene biosynthesis in intact plants and their organs. Mechanical wounding and other abiotic (osmotic stress, water deficit, dessication stress, heavy metals, touch, ozone) and biotic stresses (pathogen infection and insect invasion) are well known to be common factors inducing ethylene and jasmonates biosynthesis, and reactive oxygen species generation (ROS). Jasmonates have been well known to interact with ethylene in regulation of different processes; various kinds of interactions were documented: 1) synergistic interaction (i.e gene expression of proteinase inhibitors, osmotin, defensin), 2) ethylene suppresses processes induced by jasmonates (i.e. biosynthesis of nicotine, vegetative storage proteins and lectins), 3) jasmonates suppress processes induced by ethylene (i.e. ethylene-induced apical hook). Jasmonic acid carboxyl methyltransfe- rase (JMT) is a key enzyme for jasmonate-regulated plant responses. Activation of JMT expression leads to production of methyl jasmonate (JA-Me). JA-Me can act as an intracellular regulator, a diffusible intercellular signal transducer, or an airborne signal mediating intra- and interplant communications. Jasmonates represent an integral part of the signal transduction chain between stress signals) and stress responses(s), in most cases of the induction of gene expression and the accumulation of defense specific proteins and secondary metabolites.
PL
Zależności między jasmonianami i etylenem w regulacji niektórych procesów fizjologicznych u roślin w warunkach stresowych są przedmiotem tego przeglądu. Jasmoniany są naturalną grupą hormonów roślinnych i wykazują wiele ważnych funkcji fizjologicznych w regulacji wzrostu i rozwoju roślin i w reakcjach obronnych przeciwko różnym czynnikom abiotycznym i biotycznym. Wykazano, że jasmoniany odgrywają ważną rolę w regulacji biosyntezy etylenu w roślinach nienaruszonych i ich organach. Mechaniczne uszkodzenie i inne czynniki abiotyczne (stres osmotyczny, deficyt wodny, stres desykacyjny, metale ciężkie, dotyk, ozon) i czynniki biotyczne (infekcja przez patogeny i żerowanie owadów) powodują wzmożoną biosyntezę etylenu i jasmonianów oraz generowanie reaktywnych form tlenu (ROS). Jasmoniany współdziałają z etylenem w regulacji różnych procesów, a interakcje te mają różny charakter: 1) synergistyczne współdziałanie (np. ekspresja genów inhibitorów proteinaz, osmotyny, defenzyny), 2) etylen hamuje procesy indukowane przez jasmoniany (np. biosynteza nikotyny, wegetatywnych białek zapasowych, lektyn), 3) jasmoniany hamują procesy indukowane przez etylen (np. wygięcia części wierzchołkowych powodowane przez etylen). Metylotransferaza karboksylową kwasu jasmonowego (JMT) jest kluczowym enzymem w procesach regulowanych przez jasmoniany w roślinach. Aktywacja ekspresji JMT doprowadza do powstawania jasmonianu metylu (JA-Me) z kwasu jasmonowego. JA-Me może działać jako regulator w obrębie komórki i jako międzykomórkowy sygnał transdukcyjny, a jako lotna substancja stanowi przekaźnik informacji między roślinami. Sugeruje się, że endogenne jasmoniany stanowią przekaźnik informacji między sygnałem stresowym a reakcją stresową, polegającą głównie na indukcji ekspresji genowej i biosyntezie specyficznych białek i metabolitów wtórnych.

Wydawca

-

Rocznik

Tom

481

Numer

1

Opis fizyczny

p.99-112,fig.,ref.

Twórcy

autor
  • Research Institute of Pomology and Floriculture, Pomologiczna 18, 96-100 Skierniewice, Poland
autor
  • College of Integrated Arts and Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
autor
  • College of Integrated Arts and Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
autor
  • Department of Plant Physiology and Biochemistry, University of Lodz, Lodz, Poland

Bibliografia

  • Andi S., Taguchi F., Toyoda K., Shiraishi т., Ichinose Y. 2001. Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol. 42: 446-449.
  • Bae G.Y., Nakajima N., Ishizuka K., Kondo N. 1996. The role in ozone phytotoxicity of the evolution of ethylene upon induction of l-aminocyclopropane-l-carboxylic acid synthase by ozone fumigation in tomato plants. Plant Cell Physiol. 37: 129-134.
  • Baldwin I.t. 1999. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. J. Chem. Ecol. 25: 3-30.
  • Creelman R.A., Mullet J.E. 1995. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 92: 4114-4119.
  • Creelman RA., Mullet J.E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355-381.
  • Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57: 779-795.
  • De Wald D.B., Sadka. A., Mullet J.E. 1994. Sucrose modulation of soybean VSP gene expression is inhibited by auxin. Plant Physiol. 104: 439-444.
  • Ellis C., Turner J.G. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025-1033.
  • Fan X., Mattheis J.R, Fellman J.K. 1998. A role for jasmonates in climacteric fruit ripening. Planta 204: 444-449.
  • Garcia-Pineda E., Lozoya-Gloria E. 1999. Induced gene expression of 1-aminocyclo- propane-l-carboxylic acid (ACC oxidase) in pepper (Capsicum annuum L.) by arachidonic acid. Plant Science 145: 11-21.
  • Heath M.C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44: 321-334.
  • Hung K.T., Kао C.H. 1996. Promotive effect of jasmonates on the senescence of detached maize leaves. Plant Growth Regul. 19: 77-83.
  • Imanishi S., Hashizume K., Nakakita M., Kojima H., Matsubayashi Y., Hashimoto Т., Sakagami Y., Yamada Y., Nakamura K. 1998. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol. Biol. 38: 1101-1111.
  • Kahl J., Siemens D.H., Aerts RJ., Gabler R., Kuhnemann F., Preston С.A.., Baldwin I.T. 2000. Herbivore-induced, ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210: 336-342.
  • Kenton R, Mur L.A.J., Atzorn R., Wasternack C., Draper J. 1999. (-)-Jasmonic acid accumulation in tobacco hypersensitive response lesions. Mol. Plant-Microbe Interac. 12: 74-78.
  • Koda Y. 1992. The role of jasmonic acid and related compounds in the regulation of plant development. Inter. Rev. Cytol. 135: 155-198.
  • Koiwa H, Bressan R.A., Hasegawa RM. 1997. Regulation of protease inhibitors and plant defence. Trends in Plant Science 2: 379-383.
  • Kuźniak E., Urbanek H. 2000. The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol. Plant. 22: 195-203.
  • Lamb C., Dixon R.A. 1997. The oxidative burst in plant disease resistance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48: 251-275.
  • Low P.S., Merida J.R. 1996. The oxidative burst in plant defense function and signal transduction. Plant Mol. Biol. 21: 985-992.
  • McConn M., Creelman R.A., Bell E., Mullet J.E., Browse J. 1997. Jasmonate is essential for insect defense. Proc. Natl. Acad. Sci. USA 94: 5473-5477.
  • Mehdy M.C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 105: 467-472.
  • Memelink J., Verpoorte R., Kijne J.W. 2001. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science 6: 212-219.
  • Mirjalili N., Linden J.C. 1996. Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata: ethylene interaction and induction models. Biotechnol. Prog. 12: 110-118.
  • Murofushi N., Yamane H., Sakagami Y., Imaseki H., Kamiya Y., Iwamura H., Hirai N., Tsuji H., Yokota Т., Ueda J. 1999. Plant Hormones, in: Comprehensive Natural Products Chemistry. Editor-in-Chief: Sir Derek Barton, Koji Nakanishi, Executive Editor: Otto Meth-Cohn. Vol 8, Miscellaneous Natural Products including Marine, Natural Products, Pheromones, Plant Hormones, and Aspects of Ecology (Volume Editor: Kenji Mori), Elsevier, Amsterdam: 19-136.
  • Norman-Setterblad C., Vidal S., Palva E.T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant-Microbe Interac. 4: 430-438.
  • O'Donnell P.J., Calvert C., Atzorn R., Wasternack C., Leyser H.M.O., Bowles D.J. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914-1917.
  • Orozco-Cárdenas M.L., Narváez-Vásquez J., Ryan C.A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179-191.
  • Orvar B.L., McPherson J., Ellis B.E. 1997. Pre-activation wounding response in tobacco prior to high-level ozone exposure prevents necrotic injuiy. Plant J. 11: 203-212.
  • Overmyer K., Tuominen H., Kettunen R., Betz C., Langebartels С., Sandermann H., Kangasjärvi J. 2000. Ozone-sensitive Arabidopsis rcdl mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12: 1849-1862.
  • Penninckx I.A.М.А., Thomma B.P.H.J., Buchała A., Metraux J.-P., Broekaert W.F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103-2113.
  • Phisalaphong M., Linden J.C. 1999. Ethylene and methyl jasmonate interaction and binding models for elicited biosynthetic steps of paclitaxel in suspension cultures of Taxus canadensis, in: Biology and Biotechnology of the Plant Hormone Ethylene II. A.K. Kanellis, C. Chang, H. Klee, A.B. Bleecker. J.C. Pech, D. Grierson (eds.), Kluwer Academic Publishers, Dordrecht, Boston: 85-94.
  • Rakwal R., Agrawal G.K., Yonekura M. 1999. Separation of proteins from stressed rice (Oiyza sativa L) leaf tissues by two-dimensional Polyacrylamide gel electrophoresis: Induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis 20: 3472-3478.
  • Rao M.V., Koch J.R., Davis K.R. 2000. Ozone: a tool for probing programmed cell death in plants. Plant Mol. Biol. 44: 345-358.
  • Reymond P., Farmer E.E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology 1: 404-411.
  • Rojo E., Leon J., Sanchez-Serrano J.J. 1999. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20: 135-142.
  • Rojo E., Titarenko E., Leon J., Berger S., Vancanneyt G., Sanchez-Serrano J.J. 1998. Reversible protein phosphorylation regulates jasmonic acid dependent and independent wound signal transduction pathways in Arabidopsis thaliana. Plant J. 12: 153-165.
  • Saniewski M. 1995. Methyl jasmonate in relation to ethylene production and other physiological processes in selected horticultural crops. Acta Hortic. 394: 85-98.
  • Saniewski M. 1997. The role of jasmonates in ethylene biosynthesis, in: Biology and Biotechnology of the Plant Hormone Ethylene. A.K. Kanellis, C. Chang, H. Kende, D. Grierson (eds.), Kluwer Academic Publishers, Dordrecht, Boston, London: 39-45.
  • Saniewski M., Czapski J. 1999. Jasmoniany i ich funkcja allelopatyczna. Postępy Nauk Rolniczych 1: 3-18.
  • Saniewski M., Lange E., Czapski J. 1995. Rola estru metylowego kwasu jasmonowego - nowego hormonu roślinnego w biosyntezie etylenu. Postępy Nauk Rolniczych 3: 3-17.
  • Saniewski M., Ueda J., Miyamoto К. 1999. Interaction of ethylene with jasmonates in the regulation of some physiological processes in plants, in: Biology and Biotechnology of the Plant Hormone Ethylene II. A.K. Kanellis, C. Chang, H. Klee, A.B. Bleecker, J.C. Pech, D. Grierson (eds.), Kluwer Academic Publishers, Dordrecht, Boston: 173-180.
  • Saniewski M., Ueda J., Miyamoto K., Horbowicz M., Puchalski J. 2000. Methyl jasmonate induces gummosis in plants. Human and Environmental Sciences 9: 93-100.
  • Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond Т., Somerville S., Manners J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655-11660.
  • Schraudner M., Langebartels C., Sandermann H. 1997. Changes in the biochemical status of plant cells induced by the environmental pollutant ozone. Physiol. Plant. 100: 274-280.
  • Sembdner G., Parthier B. 1993. The biochemistiy and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 569-589.
  • Seo S., Sano H., Ohashi Y. 1997. Jasmonic acid in wound signal transduction pathways. Physiol. Plant. 100: 740-745.
  • Seo H.S., Song J.T, Cheong J.-J., Lee Y.-H, Lee Y.-W., Hwang I, Lee J.S, Choi Y.D. 2001. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 98: 4788-4793.
  • Thomma B.P.H.J., Eggermont K., Broekaert W.F., Cammue B.P.A. 2000. Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol. Biochem. 38: 421-427.
  • Shoji Т., Nakajima K., Hashimoto T. 2000. Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis. Plant Cell Physiol. 41: 1072-1076.
  • Tuomainen J., Betz C., Kangasjarvi J., Ernst D., Yin Z.H., Langebartles C., Sandermann H., Jr. 1997. Ozone induction of ethylene emission in tomato plants: regulation by differential transcript accumulation for the biosynthetic enzymes. Plant J. 33: 1151-1162.
  • Ueda J., Kato J. 1980. Isolation and identification of a senescence-promoting substances from wormwood (Artemisia absinthium L.). Plant Physiol. 66: 246-249.
  • Van Wees S.C.M., De Swart Е.A.М., Van Pelt J.A., Van Loon L.C., Pieterse C.M.J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 8711-8716.
  • Vijayan P., Shockey J., Levesque C.A., Cook R.J., Browse J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 7209-7214.
  • Wasternack C., Parthier B. 1997. Jasmonate signalled plant gene expression. Trends in Plant Science 2: 302-307.
  • Watanabe Т., Fujita H., Sakai S. 2001b. Effects of jasmonic acid and ethylene on the expression of three genes for wound-inducible 1-aminocyclopropane-1-carboxylate synthase in winter squash (Cucurbita maxima). Plant Science 161: 67-75.
  • Watanabe K., Kamo Т., Nishikawa F, Hyodo H. 2000. Effect of methyl jasmonate on senescence of broccoli florets. J. Japan. Soc. Hort. Sci. 69: 605-610.
  • Watanabe Т., Sakai S. 1998. Effects of active oxygen species and methyl jasmonate on expression of the gene for a wound-inducible 1-aminocyclopropane-1-carboxylate synthase in winter squash (Cucurbita maxima). Planta 206: 570-576.
  • Watanabe Т., Seo S., Sakai S. 2001a. Wound-induced expression of a gene for 1-aminocyclopropane-1-carboxylate synthase and ethylene production are regulated by both reactive oxygen species and jasmonic acid in Cucurbita maxima. Plant Physiol. Biochem. 39: 121-127.
  • Xu Y., Chang P.-F.L, Liu D., Narasimhan M.L., Raghothama K.G., Hasegawa P.M., Bressan R.A. 1994. Plant defence genes are syneigistically induced by ethylene and methyl jasmonale. Plant Cell 6: 1077-1085.
  • Zhu-Salzman K., Salzman R.A., Koiwa H., Murdock L.L., Bressan R.A., Hasegawa P.M. 1998. Ethylene negatively regulates local expression of plant defense lectin genes. Physiol. Plant. 104: 365-372.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-592fac6f-8a82-4ab1-b63a-2d6329584be9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.