PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | 79 |
Tytuł artykułu

High genetic diversity promotes a common-garden trial of Quercus robur as a potential seed source

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of adaptation in forest trees might be facilitated if seeds resulting from crossings among different provenances are used for plantation establishment. This can be accomplished if seeds from existing common-garden trials become available. This paper aims to characterize genetic diversity of a provenance/family common-garden trial of Quercus robur which is considered a possible source of highly diverse seed lots. Provenance/family common-garden trial of Quercus robur located in Oleszyce, Poland, consisting of 8 to 19 families of six Polish provenances was chosen for the study. With the aid of 16 nuclear microsatellite markers, 1812 trees growing in the trial were genotyped. Standard population genetic parameters were calculated, and genetic variation and inbreeding were compared among provenances. Expected heterozygosity and particularly allelic richness appeared to be high, reaching on average 0.847 and 23.5, respectively. We found no signatures of inbreeding (FIS=0.006) and low, although statistically significant, level of genetic differentiation among provenances (FST=0.016). On the other hand, we found high allelic differentiation (AST=0.137) between provenances, though uneven contribution of each provenance to the total allelic richness was noted. Effective population sizes estimated for each provenance based on linkage disequilibrium were highly correlated with the number of families within provenances. We conclude that the studied common-garden trial possesses high genetic diversity and possible mating among different provenances may promote further heterosis effects. Thus the trial may be used in the future as an experimental source of highly diverse seed lots much needed in the context of climate change.
Słowa kluczowe
EN
Wydawca
-
Czasopismo
Rocznik
Tom
79
Opis fizyczny
p.1–9,fig.,ref.
Twórcy
Bibliografia
  • Aitken SN, Yeaman S, Holliday JA, Wang T & Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1: 95–111. doi: 10.1111/j.1752-4571.2007.00013.x
  • Alberto F, Niort J, Derory J, Lepais O, Vitalis R, Galop D & Kremer A (2010) Population differentiation of sessile oak at the altitudinal front of migration in the French Pyrenees. Molecular Ecology 19: 2626–2639. doi: 10.1111/j.1365-294X.2010.04631.x
  • Bell JC, Powell M, Devey ME & Moran GF (2004) DNA profiling, pedigree lineage analysis and monitoring in the Australian breeding program of radiata pine. Silvae Genetica 53: 130–134.
  • Bolte A & Degen B (2010) Forest adaptation to climate change – options and limitations. Landbauforschung Völkenrode 60: 111–117.
  • Breed MF, Stead MG, Ottewell KM, Gardner MG & Lowe AJ (2012) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conservation Genetics 14: 1–10. doi: 10.1007/s10592-012-0425-z
  • Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA & Yates C (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evolutionary Applications 1: 587–597. doi: 10.1111/j.1752-4571.2008.00045.x
  • Byrne M, Stone L & Millar MA (2011) Assessing genetic risk in revegetation. Journal of Applied Ecology 48: 1365–1373. doi: 10.1111/j.1365-2664.2011.02045.x
  • Caballero A & Rodriguez-Ramilo ST (2010) A new method for the partition of allelic diversity within and between subpopulations. Conservation Genetics 11: 2219–2229. doi: 10.1007/s10592-010-0107-7
  • Chybicki IJ & Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100: 106–113. doi: 10.1093/jhered/esn088
  • Chybicki IJ, Oleksa A & Kowalkowska K (2012) Variable rates of random genetic drift in protected populations of English yew: implications for gene pool conservation. Conservation Genetics 13: 899–911. doi: 10.1007/s10592-012-0339-9
  • Cottrell JE, Munro RC, Tabbener HE, Milner AD, Forrest GI & Lowe AJ (2003) Comparison of fine-scale genetic structure using nuclear microsatellites within two British oakwoods differing in population history. Forest Ecology and Management 176: 287–303. doi: 10.1016/S0378-1127(02)00289-X
  • Curtu AL, Gailing O, Leinemann L & Finkeldey R (2007) Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biology 9: 116–126. doi: 10.1055/s-2006-924542
  • Degen B, Streiff R & Ziegenhagen B (1999) Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci. Heredity 83: 597–603. doi: 10.1038/sj.hdy.6886220
  • Dering M & Chybicki I (2012) Assessment of genetic diversity in two-species oak seed stands and their progeny populations. Scandinavian Journal of Forest Research 27: 2–9. doi: 10.1080/02827581.2011.631934
  • Dillon S, McEvoy R, Baldwin DS, Rees GN, Parsons Y & Southerton S (2014) Characterisation of adaptive genetic diversity in environmentally contrasted populations of Eucalyptus camaldulensis Dehnh. (River Red Gum). PloS One 9: e103515. doi: 10.1371/journal.pone.0103515
  • Dow BD, Ashley MV & Howe HF (1995) Characterization of highly variable (GA/CT) n microsatellites in the bur oak, Quercus macrocarpa. Theoretical and Applied Genetics 91: 137–141. doi: 10.1007/BF00220870
  • Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
  • Excoffier L & Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x
  • Franjić J, Sever K, Bogdan S, Škvorc Ž, Krstonošić D & Alešković I (2011) Phenological asynchronization as a restrictive factor of efficient pollination in clonal seed orchads of pedunculate oak (Quercus robur L.). Croatian Journal of Forest Engineering 32: 154–156.
  • Gauzere J, Oddou-Muratorio S, Pichot C, Lefèvre F & Klein E (2013) Biases in quantitative genetic analyses using open-pollinated progeny tests from natural tree populations. Acta Botanica Gallica 160: 227–238. doi: 10.1080/12538078.2013.822827
  • Gömöry D, Yakovlev I, Zhelev P, Jedináková J & Paule L (2001) Genetic differentiation of oak populations within the Quercus robur/Quercus petraea complex in Central and Eastern Europe. Heredity 86: 557–563. doi: 10.1046/j.1365-2540.2001.00874.x
  • Goto S, Iijima H, Ogawa H & Ohya K (2011) Outbreeding depression caused by intraspecific hybridization between local and nonlocal genotypes in Abies sachalinensis. Restoration Ecology 19: 243–250. doi: 10.1111/j.1526-100X.2009.00568.x
  • Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86: 485–486. doi: 10.1093/oxfordjournals.jhered.a111627
  • Graudal L, Aravanopoulos F, Bennadji Z, Changtragoon S, Fady B, Kjær ED, Loo J, Ramamonjisoa L & Vendramin GG (2014) Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. Forest Ecology and Management 333: 35–51. doi: 10.1016/j.foreco.2014.05.002
  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N & Vellend M (2008) Ecological consequences of genetic diversity. Ecology Letters 11: 609–623. doi: 10.1111/j.1461-0248.2008.01179.x
  • João Gaspar M, de-Lucas AI, Alía R, Almiro Pinto Paiva J, Hidalgo E, Louzada J, Almeida H & González-Martínez SC (2009) Use of molecular markers for estimating breeding parameters: a case study in a Pinus pinaster Ait. progeny trial. Tree Genetics & Genomes 5: 609–616. doi: 10.1007/s11295-009-0213-1
  • Kampfer S, Lexer C, Glössl J & Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129: 183–186. doi: 10.1111/j.1601-5223.1998.00183.x
  • Koskela J, Buck A & Teissier du Cros E (2007) Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Bioversity International, Rome, Italy.
  • Koskela J, Lefèvre F, Schueler S, Kraigher H, Olrik DC, Hubert J, Longauer R, Bozzano M, Yrjänä L, Alizoti P, Rotach P, Vietto L, Bordács S, Myking T, Eysteinsson T, Souvannavong O, Fady B, De Cuyper B, Heinze B, von Wühlisch G, Ducousso A & Ditlevsen B (2013) Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biological Conservation 157: 39–49. doi: 10.1016/j.biocon.2012.07.023
  • Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J, Kjaer ED, Navarro C, Padolina C, Bordács S, Jamnadass R, Graudal L & Ramamonjisoa L (2014) Utilization and transfer of forest genetic resources: A global review. Forest Ecology and Management 333: 22–34. doi: 10.1016/j.foreco.2014.07.017
  • Lindenmayer DB, Franklin JF & Fischer J (2006) General management principles and a checklist of strategies to guide forest biodiversity conservation. Biological Conservation 131: 433–445. doi: 10.1016/j.biocon.2006.02.019
  • Loiselle BA, Sork VL, Nason J & Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82: 1420–1425. doi: 10.2307/2445869
  • Mariette S, Cottrell J, Csaikl UM, Goikoechea P, Konig A, Lowe AJ, Van Dam BC, Barreneche T, Bodenes C, Streiff R, Burg K, Groppe K, Munro RC, Tabbener H & Kremer A (2002) Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q . robur L. stands. Silvae Genetica 51: 72–79.
  • Martin J & Henrichs T (2010) The European environment: state and outlook 2010: synthesis. European Environment Agency, Copenhagen.
  • Merlo E, Díaz R, Zas R & Fernández-López J (2004) Possibility of using the Pseudotsuga menziesii (Mirb.) Franco provenance tests as local seed sources. Forest Systems 13: 492–505.
  • Muir G, Lowe AJ, Fleming CC & Vogl C (2004) High nuclear genetic diversity, high levels of outcrossing and low differentiation among remnant populations of Quercus petraea at the margin of its range in Ireland. Annals of Botany 93: 691–697. doi: 10.1093/aob/mch096
  • Muir K, Byrne M, Barbour E, Cox MC & Fox JED (2007) High levels of outcrossing in a family trial of Western Australian sandalwood (Santalum spicatum). Silvae Genetica 56: 222–230.
  • Nanson A (1972) The provenance seedling seed orchard. Silvae Genetica 21: 243–249.
  • Nielsen R, Tarpy DR & Reeve HK (2003) Estimating effective paternity number in social insects and the effective number of alleles in a population. Molecular Ecology 12: 3157–3164. doi: 10.1046/j.1365-294X.2003.01994.x
  • Sgrò CM, Lowe AJ & Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4: 326–337. doi: 10.1111/j.1752-4571.2010.00157.x
  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K & Glössl J (1997) Identification and characterization of (GA/CT) n-microsatellite loci from Quercus petraea. Plant Molecular Biology 33: 1093–1096. doi: 10.1023/A:1005736722794
  • Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glossl J & Kremer A (1998) Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7: 317–328. doi: 10.1046/j.1365-294X.1998.00360.x
  • Waples RS & Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications 3: 244–262. doi: 10.1111/j.1752-4571.2009.00104.x
  • Williams MI & Dumroese RK (2013) Preparing for climate change: forestry and assisted migration. Journal of Forestry 111: 287–297. doi: 10.5849/jof.13-016
  • Zelener N, Poltri SNM, Bartoloni N, López CR & Hopp HE (2005) Selection strategy for a seedling seed orchard design based on trait selection index and genomic analysis by molecular markers: a case study for Eucalyptus dunnii. Tree Physiology 25: 1457–1467. doi: 10.1093/treephys/25.11.1457
  • Zhang C, Finkeldey R & Krutovsky KV (2016) Genetic diversity and parentage analysis of aspen demes. New Forests 47: 143–162. doi: 10.1007/s11056-015-9501-9
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-59138682-913f-48f2-be7d-a05f81802412
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.