Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2018 | 64 | 2 |

Tytuł artykułu

Impact of foliar application of copper sulphate and copper nanoparticles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.)

Treść / Zawartość

Warianty tytułu

Wpływ dolistnego podawania siarczanu miedzi i nanocząstek miedzi na cechy morfologiczne i fizjologiczne oraz na skład olejku eterycznego z mięty pieprzowej (Mentha piperita L.)

Języki publikacji



Peppermint (Mentha piperita L.), a member of Lamiaceae family, is an important medicinal plant that has many useful properties. Copper is an essential micronutrient for normal plant growth and metabolism.The aim of this study was to examine the effects of copper sulphate and copper nanoparticles on morpho-physiological traits and essential oil composition of peppermint. Seven treatments of copper sulphate and copper nanoparticles in three concentrations (0.5, 1.0 and 1.5 g/l) and control were applied in foliar application three times of the interval of 15 days up to flowering stages of peppermint in Karaj, Iran in 2015. Copper nanoparticles (1.0 g/l) increased chlorophyll content and essential oil percentage of 35% and 20% higher than control, respectively. The copper sulfate (0.5 g/l) increased dry matter yield up to 58% higher than control. The effects of treatments were significant on 17 out of 34 compositions. Copper nanoparticles (1.0 g/l) increased menthol, menthone and menthofuran content up to 15, 25 and 65% higher than in control, respectively. Foliar application of copper sulfate (0.5 g/l) and copper nanoparticles (1.0 g/l) in flowering stage were suggested for increase of dry matter production, essential oil content and composition, respectively.
Mięta pieprzowa (Mentha piperita L.) z rodziny Lamiaceae jest ważną rośliną leczniczą o wielu zastosowaniach. Miedź jest ważnym mikroelementem niezbędnym do prawidłowego wzrostu i metabolizmu roślin. Celem pracy było zbadanie wpływu siarczanu miedzi i nanocząstek miedzi na cechy morfologiczne i fizjologiczne oraz na skład olejku eterycznego mięty pieprzowej. Siarczan miedzi i nanocząstki miedzi podawano dolistnie trzykrotnie w odstępie 15 dni aż do fazy kwitnienia. Hodowano także grupę kontrolną w trzech stężeniach (0,5, 1,0 i 1,5 g/l). Badanie przeprowadzono w Karaj w Iranie. Nanocząstki miedzi (1,0 g/l) spowodowały wzrost zawartości chlorofilu i olejku eterycznego (w %), odpowiednio o 35 i 20% w stosunku do grupy kontrolnej. Siarczan miedzi (0,5 g/l) zwiększał suchą masę surowca o 58% w porównaniu z grupą kontrolną. Wpływ nawożenia był istotny statystycznie w przypadku 17 związków spośród 34 składników olejku. Nanocząstki miedzi (1,0 g/l) zwiększyły zawartość mentolu, mentonu i mentofuranu odpowiednio do 15, 25 i 65% w porównaniu z grupą kontrolną. Podanie dolistne siarczanu miedzi (0,5 g/l) i nanocząstek miedzi (1,0 g/l) w stadium kwitnienia może powodować zwiększenie produkcji suchej masy surowca oraz wpływać na zawartość i skład olejku eterycznego.









Opis fizyczny



  • Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
  • Department of Horticulture, Islamic Azad University, Saveh Branch Saveh, Iran
  • Department of Horticulture, Islamic Azad University, Garmsar Branch, Garmsar, Iran


  • Souza MP, Matos NEO, Matos FJA. Constituintes Qumicos de Plantas Medicinais Brasileiras. Imprensa Universitria/UFC, Fortaleza 1991.
  • Shah, PP, D’Mello PM. A review of medicinal uses and pharmacological effects of Mentha piperita. Nat Pro Rad 2005; 3(4):214-221. doi:
  • Nostro N, Germano MP, Angelo VD, Marino A, Cannatelli MA. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 2000; 30:379-384. doi: http//
  • Ormancey X, Sisalli S, Coutiere P. Formulation of essential oils in functional perfumery. Parf Cosm Act 2001; 157:30-40.
  • Mozaffarian V. A pictorial dictionary of botany botanical taxonomy Latin-English-French-Germany-Persian. Germany: Koeltz Scientific Books 2008:522.
  • Tucker AO. The truth about mints. Herb Companion 1992; 4:51-52.
  • Murrray MT. The healing power of herbs: the enlightened person’s guhde to the wonders of medicinal plants. Rocklin, CA: Prima Pub, XIV, 1995; 410. doi:
  • Sawan ZM, Hafez SA, Basyony AE. Effect of phosphorus fertilization and foliar application of chelated zinc and calcium on seed, protein and oil yields and oil properties of cotton. J Agric Sci 2001; 136:191-198. doi: http//
  • Bacha MA, Sabbah AM, Hamady MA. Effect of foliar application of iron, zinc and manganese on yield, berry quality and leaf mineral composition of Thompson seedless and roomy red grape cultivars. J King Saud Univ Agric Sci 1997; 9(1):127-140.
  • Baloch QB, Chachar QI, Tareen MN. Effect of foliar application of macro and micronutrients on production of green chilies (Capsicum annuum L.). J Agric Tech 2008; 4(2):177-184.
  • Ball P. Natural strategies for the molecular engineer. Nanotech 2002; 13(5):15-28. doi: http//
  • Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R. Revisiting fertilisers and fertilization strategies for improved nutrient uptake by plants. Biol Fertil Soils 2015; 51:897-911. doi: http//
  • Naderi, MR, Danesh Shahraki A. Nanofertilizers and their roles in sustainable agriculture Intl J Agri Crop Sci 2013; 5(19):2229-2232.
  • Pozveh ZT, Roya R, Fatemeh R. Changes occurring in canola (Brassica napus L.) in response silver nanoparticles treatment under in vitro conditions. Indian J Fundam Appl Life Sci 2014; 4:797-807.
  • Khater, MS. Magnetite-nanoparticles effects on growth and essential oil of peppermint. Curr Sci Int 2015; 4(2):140-144.
  • Bouazizi H, Jouili H, Geitmann AEl, Ferjani E. Copper toxicity in expanding leaves of Phaseolus vulgaris L. antioxidant enzyme response and nutrient element uptake. Ecotox Environ Safe 2010; 73:1304-08. doi: http//
  • Ke W, Xiong ZT, Chen S, Chen J. Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environ Exp Bot 2007; 59(1):59-67. doi: http//
  • Yruela I. Copper in plants. Brazil J Plant Physiol 2005; 17(1):145-56. doi:
  • Bernal M, Cases R, Picorel R. Yruela I. Foliar and root Cu supply affect differently Fe and Znuptake and photosynthetic activity in soybean plants. Environ Exp Bot 2007; 60:145-150.
  • Kabata-Pendias A. Trace elements in soils and plants. Fourth Edition. Boca Raton, Florida CRC press. 2010; 548 p.
  • Pande P, Anwar M, Chand S, Yadav VK, Patra DD. Optimal level of iron and zinc in relation to its influence on herb yield and production of essential oil in menthol mint. Commun Soil Sci Plant Anal 2007; 38:561-578. doi: http//
  • Aziz E, Gad N, Badran N. Effect of cobalt and nickel on plant growth, yield and flavonoids content of Hibiscus sabdariffa L. Aust J Basic Appl Sci 2007; 1:73-78.
  • Hungariana Pharamacopoeia, VII Kiadas, I Kotet Medicine Publication 1984.
  • Mirza M, Sefidcon F, Ahmadi L. Natural essential oils extraction. Qualitative and quantitative identification and applications. Iranian Research Institute of Forests and Rangelands Publications, Tehran1996:208p [In Persian].
  • Zheljazkov VD, Craker LE, Xing B. Effects of Cd, Pb and Cu on growth and essential oil contents in dill, peppermint and basil. Environ Exp Bot 2006; 58:9-16. doi: http//
  • Zehtab-Salmasi S, Heidari F, Alyari H. Effects of microelements and plant density on biomass and essential oil production of peppermint (Mentha piperita L.). Plant Sci Res 2008; 1(1):24-26.
  • Preetipand M, Anwar SC, Yadov V, Patra D. Optimal level of iron and zinc in relation to its influence on herb yield and protection of essential oil in menthol mint. Commun Soil Sci Plant Ana 2007; 38:561-578.
  • Pandey P, Tripathi AK. Effect of heavy metal on morphological and biochemical characteristics of Albizia procera (Roxb) Benth. seedlings. Int J Environ Sci 2011; 5:1009-1018.
  • Rout GR, Das P. Effect of metal toxicity on plant growth and metabolism. Agron 2003; 23:3-11. doi: http//
  • Dudareva N, Pichersky E, Gershenzon J. H. Biochemistry of plant volatiles. Plant Physiol 2004; 135(4): 1893-1902.
  • Derosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol 2010; 5:91. doi: http//
  • Stampoulis D, Sinha SK, White JC. 2009. Assaydependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43, 9473-9479. doi: http//
  • Shah V, Belozerova I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 2009; 197:143-148. doi: http//
  • Lee WM, An YJ, Yoon H, Kweon HS. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 2008; 27:1915-1921. doi: http//
  • Musante C, White JC. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 2012; 27(9):510-517. doi: http//

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.