PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 55 | 4 |

Tytuł artykułu

Ecophenotypic plasticity versus evolutionary trends - morphological variability in Upper Jurassic bivalve shells from Portugal

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Upper Jurassic marginal marine strata of the Lusitanian Basin (central Portugal) yield a rich benthic macrofauna from which three bivalve target taxa, i.e., Arcomytilus, Isognomon, and Eomiodon, were chosen for morphometric studies, because of their abundance both in space and time and their variability in shell shape. The shells have been analysed with regard to outline shape (Fourier shape analysis), dimensions, ornamentation (Arcomytilus) and ligament arrangement (Isognomon). Additionally, data on co−occurring fauna and palaeotemperatures calculated from δ18O values have been recorded. The results of the morphometric analyses have been interpreted with regard to phylogeny and palaeoecology. In all target taxa, a distinct, rapid size increase at around the Early/Late Kimmeridgian boundary is evident. Potential causes for this process are discussed, and an increase in food availability is regarded the most likely scenario. In Isognomon rugosus, a distinct change in resilifer arrangement co−occurs with size increase, resulting in the evolution of an endemic species in the Lusitanian Basin, for which the name Isognomon lusitanicus is reestablished. Like in several extant Mytilidae, morphological species characterisation in Arcomytilus turns out unsatisfactory, due to high intraspecific variability. However, Arcomytilus morrisii is still regarded as a valid species that evolved in the Lusitanian Basin. Despite high shape variability, Eomiodon securiformis is also considered to be a clearly distinguished species. For all target taxa morphologic variability is discussed with regard to environment, and variation between populations is delineated. The data suggest a weak correlation of facies and shell shape in Arcomytilus, while Isognomon lusitanicus seems to develop local varieties in different subbasins. Finally, the great morphologic plasticity of bivalves from rather distinct systematic entities is shown to result from different causes, thus demonstrating that careful studies of the involved species are a prerequisite to draw correct palaeoecological conclusions.

Wydawca

-

Rocznik

Tom

55

Numer

4

Opis fizyczny

p.701-732,fig.,ref.

Twórcy

autor
  • Bayerische Staatssammlung fur Palaontologie und Geologie and GeoBioCenterLMU, Richard-Wagner-Str.10, D-80333 Munich, Germany
  • GeoZentrum Nordbayern, Fachgruppe PalaoUmwelt, Friedrich-Alexander Universitat Erlangen-Nurnberg, Loewenichstr.28, D-91054 Erlangen, Germany
  • Department fur Geo- und Umweltwissenschaften, Paläontologie and Geobiologie, Ludwig-Maximilians-Universitat Munchen, Richard-Wagner-Str.10, D-80333 Munich, Germany
autor
  • Bayerische Staatssammlung fur Palaontologie und Geologie and GeoBioCenterLMU, Richard-Wagner-Str.10, D-80333 Munich, Germany

Bibliografia

  • Aguirre,M.L., Perez, S.I., and Sirch, Y.N. 2006. Morphological variability of Brachidontes Swainson (Bivalvia, Mytilidae) in themarine Quaternary of Argentina (SW Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology 239: 100–125. http://dx.doi.org/10.1016/j.palaeo.2006.01.019
  • Akester, R.J. and Martel, A.L. 2000. Shell shape, dysodont toothmorphology, and hinge−ligament thickness in the bay mussel Mytilus trossulus correlate with wave exposure. Canadian Journal of Zoology 78: 240–253. http://dx.doi.org/10.1139/cjz-78-2-240
  • Alves, T.M., Gawthorpe, R.L., Hunt, D.W., and Monteiro, J.H. 2002. Jurassic tectono−sedimentary evolution of the northern Lusitanian Basin (offshore Portugal). Marine and Petroleum Geology 19: 727–754. http://dx.doi.org/10.1016/S0264-8172(02)00036-3
  • Alves, T.M., Manupella, G., Gawthorpe, R.L., Hunt,D.W., and Monteiro, J.H. 2003. The depositional evolution of diapir− and fault−bounded rift basins: examples from the Lusitanian Basin of West Iberia. Sedimentary Geology 162: 273–303. http://dx.doi.org/10.1016/S0037-0738(03)00155-6
  • Alves, T.M., Moita, C., Sandnes, F., Cunha, T., Monteiro, J.H., and Pinheiro, L.M. 2006. Mesozoic–Cenozoic evolution of North Atlantic continental−slope basins; the Peniche Basin,western Iberianmargin. American Association of Petroleum Geologists, Bulletin 90: 31–60.
  • Amler, M.R.W. 1999. Synoptical classification of fossil and recent Bivalvia. Geologica et Palaeontologica 33: 237–248.
  • Anderson, L.C. and Roopnarine, P.D. 2005. Role of constraint and selection in the morphologic evolution of Caryocorbula (Mollusca: Corbulidae) from the Caribbean Neogene. Palaeontologia Electronica 8 (2): 1–18.
  • Anderson, T.F. and Arthur, M.A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and environmental problems. SEPM Short Courses Notes 10: 1.1–1.151.
  • Anderson, T.F., Popp, B.N., Williams, A.C., Ho, L.−Z., and Hudson, J.D. 1994. The stable isotopic records of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: palaeoenvironmental implications. Journal of the Geological Society, London 151: 125–138. http://dx.doi.org/10.1144/gsjgs.151.1.0125
  • Blakey, R.C. 2007. (December 04): Detailed global paleogeography. Available from: http://jan.ucc.nau.edu/~rcb7/globaltext2.html.
  • Bond, J.E. and Beamer, D.A. 2006. A morphometric analysis of mygalomorph spider carapace shape and its efficacy as a phylogenetic character (Araneae). Invertebrate Systematics 20: 1–7. http://dx.doi.org/10.1071/IS05041
  • Buffetaut, E., Bülow, M., Gheerbrant, E., Jaeger, J.−J., Martin, M., Mazin, J.−M., Milsent, C., and Rioult, M. 1985. Biostratigraphical zonation and new vertebrate remains in the “Sables de Glos” (Upper Oxfordian, Normandy). Comptes Rendus de l’Académie des Sciences, Série II. Mécanique−Physique−Chimie−Sciences de l’univers−Sciences de la terre 300: 929–932.
  • Carvalho, J.,Matias, H., Torres, L.,Manuppella, G., Pereira, R., and Mendes-Victor, L. 2005. The structural and sedimentary evolution of the Arruda and Lower Tagus Sub−basins, Portugal. Marine and Petroleum Geology 22: 427–453. http://dx.doi.org/10.1016/j.marpetgeo.2004.11.004
  • Casey, R. 1969. Family Neomiodontidae Casey, 1955. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia 2, N653–N655. Kansas University Press, Lawrence.
  • Chavan, C. 1952. Les Pélécypodes des sables astartiens de Cordebugles (Calvados). Schweizerische Palaeontologische Abhandlungen 69: 1–132.
  • Choffat, P. 1885. Description de la faune jurassique du Portugal. Mollusques Lamellibranches 2e ordre. Asiphonida. Mémoires de la Direction des Travaux Géologiques du Portugal 1885: 1–76.
  • Choffat, P. 1893. Description de la faune jurassique du Portugal. Mollusques Lamellibranches Premier ordre. Siphonida. Mémoires de la Direction des Travaux Géologiques du Portugal 1893: 1–39.
  • Contejean, Ch. 1860 [for 1859]. Étude de l’étageKimméridgien dans les environs de Montbéliard et dans le Jura. Mémoires de la Société d’Emulation du Doubs 1860: 1–352.
  • Cox, L.R. 1969. Family Isognomonidae Woodring, 1925. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia 1, N321–N326. Kansas University Press, Lawrence.
  • Cox, L.R., Nuttall, C.P., and Trueman, E.R. 1969. General features of Bivalvia. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia 1, N2–N129. Kansas University Press, Lawrence.
  • Crampton, J.S. and Gale, A.S. 2005. A plastic boomerang: speciation and intraspecific evolution in the Cretaceous bivalve Actinoceramus. Paleobiology 31: 559–577.
  • Crampton, J.S. andGale, A.S. 2009. Taxonomy and biostratigraphy of the Late Albian Actinoceramus sulcatus lineage (Early Cretaceous Bivalvia, Inoceramidae). Journal of Paleontology 83: 89–109. http://dx.doi.org/10.1666/08-037R.1
  • Crampton, J.S. and Haines, A.J. 1996. Users' manual for programs Hangle, Hmatch and Hcurve for the Fourier shape analysis of two−dimensional outlines. Institute of Geological and Nuclear Sciences, Science Report 96: 1–28.
  • Crampton, J.S. and Maxwell, P.A. 2000. Size: All it’s shaped up to be? Evolution of shape through the lifespan of the Cenozoic bivalve Spissatella (Crassatellidae). In: E.M. Harper, J.D. Taylor, and J.A. Crame (eds.), The Evolutionary Biology of the Bivalvia, 399–423. Geological Society, London.
  • Delvene, G. 2007. Middle and Upper Jurassic bivalves from the Geomining Museum collections (IGME, Geological Survey of Spain). Beringeria 37: 11–31.
  • Delvene, G. and Fürsich, F.T. 2002. Catálogo de los bivalvos espańoles del Jurásico Medio y Superior depositados en el Museo Geominero (IGME, Madrid). Boletin Geológico y Minero 113: 199–210.
  • Enay, R. 1997. Le Jurassique Supérieur. In: E. Cariou and P. Hantzpergue (eds.), Biostratigraphie du Jurassique Ouest−Européen et Méditerranéen. Zonations parallèles et distribution des invertébrés et microfossiles. Bulletin des Centres de Recherches Exploration−Production Elf−Aquitaine, Mémoir 17: 363–369.
  • Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C. 1951. Carbonate−water isotopic temperature scale. Geological Society of America, Bulletin 62: 417–426. http://dx.doi.org/10.1130/0016-7606(1951)62%5B417:CITS%5D2.0.CO;2
  • Freneix, S. and Quesne, H. 1985. Une espèce nouvelle du Kimméridgien du Portugal (Estremadura): Aulacomyella abadiensis nov. sp. (Bivalvia, Posidoniidae). Geobios 18: 371–376. http://dx.doi.org/10.1016/S0016-6995(85)80099-1
  • Fürsich, F.T. 1980. Preserved life positions of some Jurassic bivalves. Paläontologische Zeitschrift 54: 289–300.
  • Fürsich, F.T. 1981a. Salinity−controlled benthic associations from the Upper Jurassic of Portugal. Lethaia 14: 203–223. http://dx.doi.org/10.1111/j.1502-3931.1981.tb01690.x
  • Fürsich, F.T. 1981b. Jurassicorbula n. gen., a new bivalve genus from the Upper Jurassic of Portugal. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1981: 737–741.
  • Fürsich, F. T. 1994: Palaeoecology and evolution of Mesozoic salinity−controlled benthic macroinvertebrate associations. Lethaia 26: 327−346. http://dx.doi.org/10.1111/j.1502-3931.1993.tb01540.x
  • Fürsich, F.T. and Aberhan, M. 1990. Significance of time−averaging for palaeocommunity analysis. Lethaia 23: 143–152.
  • Fürsich, F.T. and Schmidt−Kittler, N. 1980. Biofacies analysis of Upper Jurassic marginally marine environments of Portugal. I. The carbonate−dominated facies at Cabo Espichel, Estremadura. (With a contribution of M. Ramalho). Geologische Rundschau 69: 943–981. http://dx.doi.org/10.1007/BF02104654
  • Fürsich, F.T. and Werner, W. 1984. Salinity zonation of benthic associations in the Upper Jurassic of the Lusitanian Basin (Portugal). Geobios, Mémoir spécial 8: 85–92. http://dx.doi.org/10.1016/S0016-6995(84)80160-6
  • Fürsich, F.T. and Werner, W. 1985. New species of brackish water Bivalvia from the Upper Jurassic of Portugal. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1985: 438–448.
  • Fürsich, F.T. and Werner, W. 1986. Benthic associations and their environmental significance in the Lusitanian Basin (Upper Jurassic, Portugal). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 172: 271–329.
  • Fürsich, F.T. and Werner, W. 1988. The Upper Jurassic Bivalvia of Portugal. Part I. Palaeotaxodonta and Pteriomorphia (Arcoida and Mytiloida). Comunicações dos Serviços Geológicos de Portugal 73: 103–144.
  • Fürsich, F.T. and Werner, W. 1989a. The Upper Jurassic Bivalvia of Portugal. Part II. Pteriomorphia (Pteroida exclusive Ostreina). Comunicações dos Serviços Geológicos de Portugal 74: 105–164.
  • Fürsich, F.T. and Werner, W. 1989b. Taxonomy and ecology of Juranomia calcibyssata gen. et sp. nov.—a widespread anomiid bivalve from the Upper Jurassic of Portugal. Geobios 22: 325–337. http://dx.doi.org/10.1016/S0016-6995(89)80135-4
  • Fürsich, F.T. and Werner, W. 1991. Palaeoecology of coralline spongecoral meadows from the Upper Jurassic of Portugal. Paläontologische Zeitschrift 65: 35–69.
  • Fürsich, F.T., Werner, W., and Schneider, S. 2009. Autochthonous to parautochthonous bivalve concentrations within transgressive marginal marine strata of the Upper Jurassic of Portugal. Palaeobiodiversity and Palaeoenvironments 89: 161–190.
  • Gardner, J.P.A. 2004. A historical perspective of the genus Mytilus (Bivalvia: Mollusca) in New Zealand: multivariate morphometric analyses of fossil, midden and contemporary blue mussels. Biological Journal of the Linnean Society 82: 329–344. http://dx.doi.org/10.1111/j.1095-8312.2004.00362.x
  • Gosling, E. 1992a. Systematics and geographic distribution of Mytilus. In: E. Gosling (ed.), The mussel Mytilus: Ecology, physiology, genetics and culture. Developments in Aquaculture and Fisheries Science 25: 1–20.
  • Gosling, E. 1992b. Genetics of Mytilus. In: E. Gosling (ed.), The mussel Mytilus: ecology, physiology, genetics, and culture. Developments in Aquaculture and Fisheries Science 25: 309–382.
  • Goldfuss, G.A. 1826–44. Petrefacta Germaniae. 692 pp. Arnz, Düsseldorf.
  • Gould, G.C. and MacFadden, B.J. 2004. Gigantism, dwarfism, and Cope’s Rule: “Nothing in evolutionmakes sensewithout a phylogeny”. American Museum of Natural History Bulletin 285: 219–237. http://dx.doi.org/10.1206/0003-0090(2004)285%3C0219:C%3E2.0.CO;2
  • Haines, A.J. and Crampton, J.S. 2000. Improvements to the method of Fourier shape analysis as applied in morphometric studies. Palaeontology 43: 765–783. http://dx.doi.org/10.1111/1475-4983.00148
  • Hallam, A. 1968. Morphology, palaeoecology and evolution of the genus Gryphaea in the British Lias. Philosophical Transactions of the Royal Society of London, Series B 234: 91–128. http://dx.doi.org/10.1098/rstb.1968.0014
  • Hallam, A. 1975. Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature 258: 493–496. http://dx.doi.org/10.1038/258493a0
  • Hallam, A. 1998. The determination of Jurassic environments using palaeoecological methods. Bulletin de Societé géologique de France 169: 681–687.
  • Hajkr, O., Růžička, B., and Prantl, F. 1960. Biometrical study of the outline of some mytiloid pelecypods. Sborník Národního Muzea v Praze 17: 81–95.
  • Hammer,Ø., Harper, D.A.T., and Ryan, P.D. 2001. PAST: Palaeontological Statistics software package for education and data analysis. Palaeontologia Electronica 4 (1): 1–9.
  • Harzhauser, M. and Mandic, O. 2008. Neogene lake systems of Central and South−Eastern Europe: Faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology 260: 417–434. http://dx.doi.org/10.1016/j.palaeo.2007.12.013
  • Huckriede, R. 1967. Molluskenfaunen mit limnischen und brackischen Elementen aus Jura, Serpulit und Wealden NW−Deutschlands und ihre paläogeographische Bedeutung. Beihefte zum Geologischen Jahrbuch 67: 1–263.
  • Jackson, D.A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214. http://dx.doi.org/10.2307/1939574
  • Johnson, A.L.A. 1984. The palaeobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe. Zitteliana 11: 1–235.
  • Johnson, A.L.A. 1994. Evolution of European Lower Jurassic Gryphaea (Gryphaea) and contemporaneous bivalves. Historical Biology 7: 167–186. http://dx.doi.org/10.1080/10292389409380451
  • Johnson, A.L.A. 1999. Evidence and cause of small size in Bathonian (Middle Jurassic) marine bivalves of north−western Europe. Palaeontology 42: 605–624. http://dx.doi.org/10.1111/1475-4983.00088
  • Katz, M.E., Wright, J.D., Miller, K.G., Cramer, B.S., Fennel, K., and Falkowski, P.G. 2005. Biological overprint of the geological carbon cycle. Marine Geology 217: 323–338. http://dx.doi.org/10.1016/j.margeo.2004.08.005
  • Kidwell, S.M. and Bosence, D.W.J. 1991 Taphonomy and time−averaging of marine shelly faunas. In: P.A. Allison and D.E.G. Briggs (eds.), Taphonomy. Releasing the data locked in the fossil record. Topics in Geobiology 9: 116–209.
  • Kirby, M.X., Soniat, T.M., and Spero, H.J. 1998. Stable isotope sclerochronology of Pleistocene and Recent oyster shells (Crassostrea virginica). Palaios 13: 560–569. http://dx.doi.org/10.2307/3515347
  • Kuhl, F.P. and Giardina, C.R. 1982. Elliptic Fourier features of a closed contour. Computer graphics and image processing 18: 236–258. http://dx.doi.org/10.1016/0146-664X(82)90034-X
  • Lee, T. and Ó Foighil, D. 2004. Hidden Floridian biodiversity: mitochondrial and nuclear gene trees reveal four cryptic species within the scorched mussel, Brachidontes exustus, species complex. Molecular Ecology 13: 3527–3542. http://dx.doi.org/10.1111/j.1365-294X.2004.02337.x
  • Lee, T. and Ó Foighil, D. 2005. Placing the Floridian marine genetic disjunction into a regional evolutionary context using the “scorched mussel” Brachidontes exustus species complex. Evolution 59: 2139–2358.
  • Leinfelder, R.R. 1986. Facies, stratigraphy and paleogeographic analysis of Upper? Kimmeridgian to Upper Portlandian sediments in the environs of Arruda dos Vinhos, Estremadura, Portugal. Münchner Geowissenschaftliche Abhandlungen A 7: 1–215.
  • Leinfelder, R.R. and Wilson, R.C.L. 1998. Third−order sequences in an upper Jurassic rift−related second−order sequence, central Lusitanian Basin, Portugal. SEPM Special Publications 60: 507–525.
  • Lestrel, P.E. 1989. Method for analyzing complex two−dimensional forms: elliptical Fourier functions. American Journal of Human Biology 1: 149–164. http://dx.doi.org/10.1002/ajhb.1310010204
  • Liow, L.H. 2006. Do deviants live longer? Morphology and longevity in trachyleberidid ostracodes. Paleobiology 32: 55–69.
  • Loriol, P. de and Cotteau, G. 1868. Monographie paléontologique et géologique de l'étage portlandien du département de l'Yonne. Bulletin de la Société des Sciences historiques et naturelles de l’Yonne 1 (2): 1–260.
  • Loriol, P. de and Pellat, E. 1866. Monographie paléontologique et géologique de l’étage Portlandien des environs de Boulogne−sur−Mer. Mémoires de la Société de Physique et d’Histoire naturelle de Genève 19 (1): 1–200.
  • Loriol. P. de and Pellat, E. 1874–75. Monographie paléontologique et géologique des étages supérieurs de la formation jurassique des environs de Boulogne−sur−Mer. Mémoires de la Société de Physique et d’Histoire naturelle de Genève 23: 1–155 [1874], 157–326 [1875].
  • Loriol, P. de, Royer, E., and Tombeck, H. 1872. Description géologique et paléontologique des étages jurassiques supérieurs de la Haute−Marne. Mémoires de la Société Linnéenne de Normandie 16: 1–542.
  • Maas, P.A.Y., O’Mullan, G.D., Lutz, R.A., and Vrijenhoek, R.C. 1999. Genetic andmorphometric characterization ofmussels (Bivalvia: Mytilidae) from Mid−Atlantic hydrothermal vents. Biological Bulletin 196: 265–272. http://dx.doi.org/10.2307/1542951
  • Martin, R.E., Quigg, A., and Podkovyrov, V. 2008. Marine biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeography, Palaeoclimatology, Palaeoecology 258: 277–291. http://dx.doi.org/10.1016/j.palaeo.2007.11.003
  • McArthur, J.M., Doyle, P., Leng, M.J., Reeve, K., Williams, C.T., Garcia−Sanchez, R., and Howarth, R.J. 2007a. Testing palaeo−environmental proxies in Jurassic belemnites: Mg/Ca, Sr/Ca, Na/Ca, δ18O and δ13C. Palaeogeography, Palaeoclimatology, Palaeoecology 252: 464–480. http://dx.doi.org/10.1016/j.palaeo.2007.05.006
  • McArthur, J.M., Janssen, N.M.M., Reboulet, S., Leng, M.J., Thirlwall, M.F., and van de Schootbrugge, B. 2007b. Palaeotemperatures, polar ice−volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): The Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeography, Palaeoclimatology, Palaeoecology 248: 391–430. http://dx.doi.org/10.1016/j.palaeo.2006.12.015
  • Meléndez, G. and Atrops, F. 1999. Report of the Oxfordian–Kimmeridgian boundary working group. International Subcommission on Jurassic Stratigraphy Newsletter 26: 67–74.
  • Mikkelsen, P.M. and Bieler, R. 2008. Seashells of Southern Florida. Living Marine Mollusks of the Florida Keys and Adjacent Regions. Bivalves. 503 pp. Princeton University Press, Princeton.
  • Montenat, C., Guery, F., and Jamet, M. 1988. Mesozoic evolution of the Lusitanian Basin; comparison with the adjacent margin. Proceedings of the Ocean Drilling Program, Scientific Results 103: 757–775.
  • Moore, G.T., Hayashida, D.N., Ross, C.A. and Jacobson, S.R. 1992. Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world; I, Results using a general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 113–150. http://dx.doi.org/10.1016/0031-0182(92)90186-9
  • Müller, P., Geary, D.H., and Magyar, I. 1999. The endemic molluscs of the Late Miocene Lake Pannon: their origin, evolution, and family−level taxonomy. Lethaia 32: 47–60.
  • Muster, H. 1995. Taxonomie und Paläobiogeographie der Bakevelliidae (Bivalvia). Beringeria 14: 3–161.
  • Nori, L. and Lathuilière, B. 2003. Form and environment of Gryphaea arcuata. Lethaia 36: 83–96. http://dx.doi.org/10.1080/00241160310003081
  • Palmer, M., Pons, G.X., and Linde, M. 2004. Discriminating between geographical groups of a Mediterranean commercial clam (Chamelea gallina [L.]: Veneridae) by shape analysis. Fisheries Research 67: 93–98. http://dx.doi.org/10.1016/j.fishres.2003.07.006
  • Perez Camacho, A., Labarta, U., and Beiras, R. 1995. Growth of mussels (Mytilus edulis galloprovincialis) on cultivation rafts: influence of seed source, cultivation site and phytoplankton availability. Aquaculture 138: 349–363. http://dx.doi.org/10.1016/0044-8486(95)01139-0
  • Ponton, D. 2006. Is geometric morphometrics efficient for comparing otolith shape of different fish species? Journal of Morphology 267: 750–757. http://dx.doi.org/10.1002/jmor.10439
  • Poppe, G.T. and Goto, Y. 1993. European seashells. Volume 2. Scaphopoda, Bivalvia, Cephalopoda. 221 pp. Christa Hemmen, Wiesbaden.
  • Price, G.D. and Sellwood, B.W. 1994. Paleotemperatures indicated by Upper Jurassic (Kimmeridgian–Tithonian) fossils from Mallorca determined by oxygen isotope composition. Palaeogeography, Palaeoclimatology, Palaeoecology 110: 1–10. http://dx.doi.org/10.1016/0031-0182(94)90106-6
  • Printrakoon, C. and Tëmkin, I. 2008. Comparative ecology of two parapatric populations of Isognomon (Bivalvia: Isognomonidae) of Kungkrabaen Bay, Thailand. The Raffles Bulletin of Zoology (Supplement) 18: 75–94.
  • Ramalho, M.M. 1971. Contribution à l'étude micropaléontologique et stratigraphique du Jurassique supérieur et du Crétacé inférieur des environs de Lisbonne (Portugal). Memórias dos Serviços Geológicos de Portugal, nova série 19: 1–212.
  • Rasmussen, E.S., Lomholt, S., Andersen,C., and Vejbaek, O.V. 1998. Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal. Tectonophysics 300: 199–225. http://dx.doi.org/10.1016/S0040-1951(98)00241-8
  • Renaud, S. andMichaux, J. 2004. Parallel evolution inmolar outline ofmurine rodents: the case of the extinct Malpaisomys insularis (Eastern Canary Islands). Zoological Journal of the Linnean Society 142: 555–572. http://dx.doi.org/10.1111/j.1096-3642.2004.00140.x
  • Rohlf, J. 2008. tpsDIG 2.12.Available from: http://life.bio.sunysb.edu/morph.
  • Roopnarine, P.D., Signorelli, J., and Laumer, C. 2008. Systematic, biogeographic and microhabitat−based morphometric variation of the bivalve Anomalocardia squamosa (Bivalvia: Veneridae, Chioninae) in Thailand. The Raffles Bulletin of Zoology (Supplement) 18: 95–102.
  • Roopnarine, P.D. and Vermeij, G.J. 2000. One species becomes two: The case of Chione cancellata, the resurrected C. elevata and a phylogenetic analysis of Chione. Journal of Molluscan Studies 66: 517–534. http://dx.doi.org/10.1093/mollus/66.4.517
  • Rufino, M.M., Gaspar, M.B., Pereira, A.M., and Vasconcelos, P. 2006. Use of shape to distinguish Chamelea gallina and Chamelea striatula (Bivalvia: Veneridae): Linear and geometric morphometric methods. Journal of Morphology 267: 1433–1440. http://dx.doi.org/10.1002/jmor.10489
  • Savazzi, E. 1995. Parasite−induced teratologies in the Pliocene bivalve Isognomon maxillatus. Palaeogeography, Palaeoclimatology, Palaeoecology 116: 131–139. http://dx.doi.org/10.1016/0031-0182(94)00097-R
  • Schneider, S. and Werner, W. 2007. Colour pattern preservation in Fuersichella n. gen. (Gastropoda: Neritopsoidea), bivalves, and echinid spines from the Upper Jurassic of Portugal. Beringeria 37: 143–160.
  • Schneider, S., Fürsich, F.T., and Werner, W. 2009. Sr−isotope stratigraphy of the Upper Jurassic of central Portugal (Lusitanian Basin) based on oyster shells. International Journal of Earth Sciences 98: 1949–1970. http://dx.doi.org/10.1007/s00531-008-0359-3
  • Scholz, H. 2003. Taxonomy, ecology, ecomorphology, and morphodynamics of the Unionoida (Bivalvia) of Lake Malawi (East−Africa). Beringeria 33: 1–86.
  • Scholz, H. and Hartman, J.H. 2007a. Paleoenvironmental reconstruction of the Upper Cretaceous Hell Creek Formation of the Williston Basin, Montana, USA: Implications from the quantitative analysis of unionid bivalve taxonomic diversity and morphologic disparity. Palaios 22: 24–34. http://dx.doi.org/10.2110/palo.2005.p05-059r
  • Scholz, H. and Hartman, J.H. 2007b. Fourier analysis and the extinction of unionoid bivalves near the Cretaceous–Tertiary boundary of the Western Interior, USA: Pattern, causes, and ecological significance. Palaeogeography, Palaeoclimatology, Palaeoecology 255: 48–63. http://dx.doi.org/10.1016/j.palaeo.2007.02.040
  • Schulz−Mirbach, T. and Reichenbacher, B. 2008. Fossil Aphanius (Teleostei, Cyprinodontiformes) from southwestern Anatolia (Turkey): A contribution to the evolutionary history of a hotspot of freshwater biodiversity. Geodiversitas 30: 5–20.
  • Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft−bottom dwellers. Palaeontology 27: 207–237.
  • Sellwood, B.W. and Valdes, P.J. 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology 190: 269–287. http://dx.doi.org/10.1016/j.sedgeo.2006.05.013
  • Sharp, Z. 2007. Principles of Stable Isotope Geochemistry. 344 pp. Pearson Education, Upper Saddle River, NY.
  • Sharpe,D. 1850. On the Secondary district of Portugalwhich lies on the North of the Tagus. Quarterly Journal of the Geological Society, London 6: 135–201. http://dx.doi.org/10.1144/GSL.JGS.1850.006.01-02.18
  • Smith, A.G., Smith, D., and Funnell, B.M. 1994. Atlas of Mesozoic and Cenozoic Coastlines. 99 pp. Cambridge University Press, Cambridge.
  • Soot−Ryen, T. 1969. Superfamily Mytilacea Rafinesque, 1815. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia 1, N271–N281. Kansas University Press, Lawrence.
  • Sowerby, J. 1812–22. The Mineral Conchology of Great Britain. 383 pls. Meredith, London.
  • Sowerby, J. 1842. James Sowerby’s Mineral−Conchologie Grossbritanniens oder ausgemalte Abbildungen und Beschreibungen der Schalthier−Überreste, welche zu verschiedenen Zeiten und in verschiedenen Tiefen der Erde erhalten worden sind.German translation by E.Desor.With annotations and rectifications by L. Agassiz. 689 pp. Jent and Gassmann, Solothurn.
  • SPSS INC. 2007. SPSS Base 16.0User’sGuide. 527 pp. SPSS Inc.,Chicago.
  • Stanley, S.M. 1970. Relation of shell form to life habits in the Bivalvia (Mollusca). Geological Society of America, Memoir 125: 1–296.
  • Stanley, S.M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. Journal of Paleontology 46: 165–212.
  • Stanley, S.M. 1979. Macroevolution. Pattern and Process. 332 pp. Freeman, San Francisco.
  • Surge, D.M., Lohmann, K.C., and Dettman, D.L. 2001. Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 283–296.
  • Surge, D.M., Lohmann, K.C., and Goodfriend, G.A. 2003. Reconstructing estuarine conditions: oyster shells as recorders of environmental change, southwest Florida. Estuarine, Coastal and Shelf Science 57: 737–756. http://dx.doi.org/10.1016/S0031−0182(01)00303−0
  • Tang, C. and Pantel, J.H. 2005. Combiningmorphometric and paleoecological analyses: Examining small−scale dynamics in species−level and community−level evolution. Palaeontologia Electronica 8 (2): 1–10.
  • Tebble, N. 1966. British Bivalve Seashells. 212 pp. HMSO, Edinburgh.
  • Tëmkin, I. 2006. Morphological perspective on the classification and evolution of Recent Pterioidea (Mollusca: Bivalvia). Zoological Journal of the Linnean Society 148: 253–312. http://dx.doi.org/10.1111/j.1096-3642.2006.00257.x
  • Valdes, P.J. and Sellwood, B.W. 1992. A palaeoclimate model for the Kimmeridgian. Palaeogeography, Palaeoclimatology, Palaeoecology 95: 47–72. http://dx.doi.org/10.1016/0031-0182(92)90165-2
  • Vermeij, G.J. 1990. Tropical Pacific pelecypods and productivity: a hypothesis. Bulletin of Marine Science 47: 62–67.
  • Walker, K.R. and Bambach, R.K. 1971. The significance of fossil assemblages from fine−grained sediments: time−averaged communities. Geological Society of America, Abstracts with Programs 3: 783–784.
  • Werner, W. 1986. Palökologische und biofazielle Analyse des Kimmeridge (Oberjura) von Consolação, Mittelportugal. Zitteliana 13: 3–109.
  • Wierzbowski, H. 2002. Detailed oxygen and carbon isotope stratigraphy of the Oxfordian in Central Poland. International Journal of Earth Sciences 91: 304–314. http://dx.doi.org/10.1007/s005310100217
  • Wierzbowski, H. and Joachimski, M. 2007. Reconstruction of late Bajocian–Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland). Palaeogeography, Palaeoclimatology, Palaeoecology 254: 523–540. http://dx.doi.org/10.1016/j.palaeo.2007.07.010
  • Willmann, R. 1985. Die Art in Raum und Zeit. Das Artkonzept in der Biologie und Paläontologie. 207 pp. Paul Parey, Berlin.
  • Wilson, R.C.L. 1975. Atlantic opening and Mesozoic continental margin basins of Iberia. Earth and Planetary Science Letters 25: 33–43. http://dx.doi.org/10.1016/0012-821X(75)90207-1
  • Wilson, R.C.L., Hiscott, R.N., Willis, M.G., and Gradstein, F.M. 1989. The Lusitanian Basin of west central Portugal: Mesozoic and Tertiary tectonic, stratigraphy and subsidence history. American Association of Petroleum Geologists, Memoir 46: 341–361.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-58856ee8-b25a-4a59-b86a-5775a8c8ef60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.