PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 6 |

Tytuł artykułu

The impact of short-term exposure to Pb and Cd on flavonoid composition and seedling growth of common buckwheat cultivars

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to compare the tolerance of seedlings of three Polish buckwheat cultivars (Hruszowska, Kora, and Luba) for short-term exposure to Pb²⁺ and Cd²⁺. Seedlings were grown under controlled conditions in Hoagland nutrient solution, with the addition of low/high Pb²⁺ or Cd²⁺ ions (0.01 and 1.00 mM, respectively). After 3 days of treated seedling growth, the levels of total anthocyanins and content of particular flavonoids were measured. The presence of low concentrations of both Pb²⁺ and Cd²⁺ resulted in a small stimulation of the growth of seedlings of all studied cultivars, while higher doses inhibit root growth and, to a much lesser extent, that of shoots. Cadmium (Cd²⁺) ions were more harmful for growth of buckwheat seedlings than Pb²⁺ ions. More resistant to stress caused by the presence of high concentrations of Pb²⁺ and Cd²⁺ in the growth medium were seedlings of Hruszowska and Luba cultivars, compared to Kora seedlings. Cotyledons of more resistant cultivars (Hruszowska and Luba) contained much more flavonoids than cotyledons of Kora.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

6

Opis fizyczny

p.1723-1730,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology and Genetics, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
  • Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Chemistry and Biodynamics of Food, Tuwima 10, 10-747 Olsztyn, Poland
  • Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Chemistry and Biodynamics of Food, Tuwima 10, 10-747 Olsztyn, Poland
autor
  • Department of Plant Physiology and Genetics, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
  • Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland

Bibliografia

  • 1. KOCHIAN L. V., PENCE N. S., LETHAM D. L. D., PINEROS M. A., MAGALHAES J. V., HOEKENGA O. A., GARVIN D. F. Mechanisms of metal resistance in plants: aluminum and heavy metals. Plant Soil 247, 109, 2002.
  • 2. COBBETT C. S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825, 2000.
  • 3. WOJAS S., CLEMENS S., HENNIG J., SKLODOWSKA A., KOPERA E., SCHAT H., BAL W., ANTOSIEWICZ D. M. Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J. Exp. Bot. 59, 2205, 2008.
  • 4. SHARMA P., DUBEY R. S. Lead toxicity in plants. Braz. J. Plant Physiol. 17, 35, 2005.
  • 5. SEREGIN I. V., KOSEVNIKOVA A. D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ. J. Plant Physiol. 55, 1, 2008.
  • 6. HUANG J. W., CUNNINGHAM S. D. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol. 134, 75, 1996.
  • 7. SHU X., YIN L., ZHANG Q., WANG W. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ. Sci. Pollut. Res. 19, 893, 2012.
  • 8. TAMURA H., HONDA M., SATO S., KAMACHI H. Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum). J. Plant Res. 118, 355, 2005.
  • 9. ARORA M., KIRAN B., RANI S., RANI A., KAUR B., MITTAL N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 111, 811, 2008.
  • 10. SCHÜTZENDÜBEL A., POLLE A. Plant responses to abitoic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351, 2002.
  • 11. BENAVIDES M. P., GALLEGO S. M., TOMARO M. L. Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 21, 2005.
  • 12. BARCELÓ J., POSCHENRIEDER C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Environ. Exp. Bot. 48, 75, 2002.
  • 13. SALT D. E., WAGNER G. J. Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd²⁺/H⁺ antiport activity. J. Biol. Chem. 268, 2297, 1993.
  • 14. YANG X., BALIGER V. C., MARTENS D. C., CLARK R. B. Cadmium effects on influx and transport of mineral nutrients in plant species. J. Plant Nutr. 19, 643, 1996.
  • 15. WÓJCIK M., TUKIENDORF A. Cadmium uptake, localization and detoxification in Zea mays. Biol. Plant. 49, 237, 2005.
  • 16. WEBER M., TRAMPCZYNSKA A., CLEMENS S. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd²⁺-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ. 29, 950, 2006.
  • 17. OBROUCHEVA N. V., BYSTROVA E. I., IVANOV V. B., ANTIPOVA O. V., SEREGIN I. V. Root growth responses to lead in young maize seedlings. Plant Soil, 200, 55, 1998.
  • 18. KARATAGLIS S. Estimation of the toxicity of different metals, using as criterion the degree of root elongation in Triticum aestivum seedlings. Phyton, 26, 209, 1987.
  • 19. SEREGIN I. V., IVANOV V. B. Histochemical investigation of cadmium and lead distribution in plants. Fiziol. Rast. (Moscow), 44, 915, 1997 [In Russian].
  • 20. ARDUINI I., GODBOLD D. L., ONNIS A. Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiol. Plant. 92, 675, 1994.
  • 21. SOBKOWIAK R., DECKERT J. Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol. Biochem. 41, 767, 2003.
  • 22. SOBKOWIAK R., DECKERT J. Proteins induced by cadmium in soybean cells. J. Plant Physiol. 163, 1203, 2006.
  • 23. PAWLAK-SPRADA S., ARASIMOWICZ-JELONEK M., PODGÓRSKA M., DECKERT J. Activation of phenylpropanoid pathway in legume plants expose to heavy metals: Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim. Pol. 58, 211, 2011.
  • 24. PAWLAK-SPRADA S., STOBIECKI M., DECKERT J. Activation of phenylpropanoid pathway in legume plants expose to heavy metals: Part II. Profiling of isoflavonoids and their glycoconjugates induced in roots of lupine (Lupinus luteus) seedlings treated with cadmim and lead. Acta Biochim. Pol. 58, 217, 2011.
  • 25. FUSCO N., MICHELETTO L., DAL CORSO G., BORGATO L., FURINI A. Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J. Exp. Bot. 56, 3017, 2005.
  • 26. SKÓRZYNSKA-POLIT E., DRAZKIEWICZ M., WIANOWSKA D., MAKSYMIEC W., DAWIDOWICZ A. L., TUKIENDORF A. The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus. Acta Physiol. Plant. 26, 247, 2004.
  • 27. LIN C-C., CHEN L-M., LIU Z-H. Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci. 168, 855, 2005.
  • 28. YANG Y-J., CHENG L-M., LIU Z-H. Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci. 172, 632, 2007.
  • 29. KOVÁČIK J., KLEJDUS B. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricardia chamomilla roots. Plant Cell Rep. 27, 605, 2008.
  • 30. KOVÁČIK J., KLEJDUS B., HEDBAVNY J., ŠTORK F., BAČKOR M. Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil, 320, 231, 2009.
  • 31. BROWN J. E., KHODR H., HIDER R. C., RICE-EVANS C. A. Structural dependence of flavonoid interactions with Cu²⁺ ions: implications for their antioxidant properties. Biochem. J. 330, 1173, 1998.
  • 32. SOCZYŃSKA-KORDALA M., BAKOWSKA A., OSZMIANSKI J., GABRIELSKA J. Metal ion-flavonoid associations in bilayer phospholipid membranes. Cell. Mol. Biol. Lett. 6, 277, 2001.
  • 33. MICHALAK A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15, 523, 2006.
  • 34. MALEŚEV D., KUNTIĆ V. Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc. 72, 921, 2007.
  • 35. WANG S.X., ZHANG F.J., FENG Q.P., LI Y.L. Synthesis, characterization, and antibacterial activity of transition metal complexes with 5-hydroxy-7,4′-dimethoxyflavone. J. Inorg. Biochem. 46, 251, 1992.
  • 36. ILBOUDO O., TAPSOBA I., BONZI-COULIBALY Y. L., GERBAUX P. Targeting structural motifs of flavonoid diglycosides using collision-induced dissociation experiments on flavonoid/Pb²⁺ complexes. Eur. J. Mass Spectr. 18, 465, 2012.
  • 37. TUMOVA L., RUSKOVA R. Effect of CdCl₂ and CuSO₄ on the production of flavonoids by the culture of Ononis arvensis L. in vitro. Ceska Slovenska Farmacie 47, 261, 1998.
  • 38. KIM M. S., KIM C., JO D. H., RYU Y. W. Effect of fungal elicitor and heavy metals on the production of flavonol glycosides in cell cultures of Ginkgo biloba. J. Microbiol. Biotechnol. 9, 661, 1999.
  • 39. SOLTI Á., GÁSPÁR L., VÁGI P., ZÁRAY G., FODOR F., SÁRVÁRI É. Cd, Fe, and light sensitivity: interrelationships in Cd-treated Populus. OMICS: J. Integr. Biol. 15, 811, 2011.
  • 40. KEILIG K., LUDWIG-MÜLLER J. Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot. Stud. 50, 311, 2009.
  • 41. HORBOWICZ M., WICZKOWSKI W., KOCZKODAJ D., SANIEWSKI M. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Hungar. 62, 265, 2011.
  • 42. MANCINELLI A.L., YANG C.-P.H., LINDQUITS P., ANDERSON R., RABINO I. Photocontrol of anthocyanin synthesis. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiol. 55, 251, 1975.
  • 43. HORBOWICZ M., GRZESIUK A., DĘBSKI H., KOCZKODAJ D., SANIEWSKI M. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Cracov. Ser. Bot., 50, 71, 2008.
  • 44. MA J. F., ZHENG S. J., MATSUMOTO H., HIRADATE S. Detoxifying aluminium with buckwheat. Nature 390, 569, 1997.
  • 45. ANTOSIEWICZ D., WIERZBICKA M. Localization of lead in Allium cepa L., cell by electron microscopy. J. Microsc. 195, 139, 1999.
  • 46. KIM S.J., MAEDA T., MARKER M.Z., TAKIGAWA S., MATSUURA-ENDO C., YAMAUCHI H., MUKASA Y., SAITO K., HASHIMOTO N., NODA T., SAITO T., SUZUKI T. Identification of anthocyanins in the sprouts of buckwheat. J. Agr. Food Chem. 55, 6314, 2007.
  • 47. CLOSE D. C., BEADLE C. L. The ecophysiology of foliar anthocyanin. Bot. Rev. 69, 149, 2003.
  • 48. CHALKER-SCOTT L. Do anthocyanins function as osmoregulators in leaf tiussues? Adv. Bot. Res. 37, 104, 2002.
  • 49. KRUPA Z., BARANOWSKA M., ORZOŁ D. Can anthocyanins be considered as heavy metal indicator in higher plants? Acta Physiol. Plant. 18, 147, 1996.
  • 50. DAVIES J. B., BARNES R. L. Effects of soil-applied fluoride and lead on growth of loblolly pine and red maple. Environ. Pollution 5, 35, 1973.
  • 51. HALE K. L., TUFANA H. A., PICKERING I. J., GEORGE G. N., TERRY N., PILON M., PILON-SMITHS E. A. H. Anthocyanins facilitate tungsten accumulation in Brassica. Physiol. Plant. 116, 351, 2002.
  • 52. COBBETT CH., GOLDSBROUGH P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann. Rev. Plant Biol. 53, 159, 2002.
  • 53. HALL J.L. Cellular mechanism for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1, 2002.
  • 54. MILONE M. T., SGHERRI C., CLIJSTERS H., NAVARIIZZO F. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ. Exp. Bot. 50, 265, 2003.
  • 55. XUE Z.-C., GAO H.-Y., ZHANG L.-T. Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biol. Plant. 2013 [In press].
  • 56. SPITELLER G. The relationship between changes in the cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiol. Plant. 119, 5, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-58754412-6679-4ce8-b0b6-770083708ee2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.