PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 34 | 2 |
Tytuł artykułu

Markery molekularne w badaniach rzepaku (Brassica napus L.). II. Przegląd praktycznych zastosowań w hodowli

Autorzy
Treść / Zawartość
Warianty tytułu
EN
Molecular markers for study of oilseed rape (Brassica napus L.). II. The review of markers used for breeding programs
Języki publikacji
PL
Abstrakty
PL
Konkurencja na rynku nasion wymusza na hodowcach rzepaku znaczne przyspieszenie prac mających na celu uzyskiwanie nowych lepszych odmian o różnych cechach. Aby sprostać takim wyzwaniom niezbędne jest zastosowanie nowych metod wykorzystujących markery molekularne. W pracy wskazano na korzyści i trudności związane z ich stosowaniem w hodowli rzepaku oraz omówiono potencjał wybranych technik dla praktycznych zastosowań. Opisano podstawowe strategie badawcze, które pozwalają na wyszukanie markerów sprzężonych z określonymi cechami. Omówiono także metody poszukiwania markerów poprzez analizę całego genomu, które mają istotne znaczenie dla analizy cech wielogenowych. Na koniec podano liczne przykłady praktycznych zastosowań markerów molekularnych w hodowli rzepaku wspomaganej markerami molekularnymi (MAS), jak również przykłady innych zastosowań użytecznych dla hodowli tej rośliny.
EN
To withstand the present competition on the seed market, the breeders must speed up their efforts to obtain new varieties better in various characteristics. It is hard to cope with such a challenge without using new methods, including the use of molecular markers. Both advantages and difficulties related to these methods as well as their usability in rapeseed breeding are presented here. Basic strategies of searching for molecular markers linked with selected traits of plants are described. The article includes some remarks on the analysis of the whole genome, which is the method of choice in case when the markers linked with multigenic features are to be found. Finally, the review of markers used for marker assisted selection (MAS) and other applications of these techniques in oilseed rape breeding programs are presented.
Wydawca
-
Rocznik
Tom
34
Numer
2
Opis fizyczny
s.151-166,bibliogr.
Twórcy
  • Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy, Oddział w Poznaniu
Bibliografia
  • Akkaya M.S., Bhagwat A.A., Cregan P.B. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 132: 1131-1139.
  • Ali M., Copeland L.O., Elias S.G., Kelly J.D. 1995. Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theor. Appl. Genet., 91: 118-121.
  • Allender C.J., Allainguillaume J., Lynn J., King G.J. 2007. Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (n = 9) wild relatives. Theor. Appl. Genet., 114: 609-618.
  • Allender C.J., King G.J. 2010. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biology, 10: 54.
  • Barret P., Delourme R., Foisset N., Renard M. 1998. Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. Theor. Appl. Genet., 97: 828-833.
  • Bartkowiak-Broda I. 1997. Markery molekularne w hodowli rzepaku. Rośliny Oleiste – Oilseed Crops, XVIII (2): 581-585.
  • Basunanda P., Spiller T.H., Hasan M., Gehringer A., Schondelmaier J., Lühs W., Friedt W., Snowdon R.J. 2007. Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breeding, 126: 581-587.
  • Betrán F.J., Ribaut J.M., Beck D., Gonzalez de León D. 2003. Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci., 43: 797-806.
  • Botstein D., White R.L., Skolnick M., Davis R.V. 1980. Construction of a genetic map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32: 314-331.
  • Brown G.G., Formanová N., Jin H., Wargachuk R., Dendy C., Patil P., Laforest M., Zhang J., Cheung W.Y., Landry B.S. 2003. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. The Plant Journal, 35: 262-272.
  • Brown G.G., Gaborieau L. 2011. Positional cloning in Brassica napus: Strategies for circumventing genome complexity in a polyploid plant. [W:] Brown G.G. (ed.). Molecular Cloning – Selected Applications in Medicine and Biology. InTech, http://www.intechopen.com/books/molecular-cloning-selected-applications-in-medicine-and-biology/positional-cloning-in-brassica-napus-strategies-for-circumventing-genome-complexity-in-a-polyploid-p.
  • Chèvre A.M., Barret P., Eber F., Dupuy P., Brun H., Tanguy X., Renard M. 1997. Selection of stable Brassica napus – B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of introgression. Theor. Appl. Genet., 95: 1104-1111.
  • Collard B.C.Y., Mackill D.J. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc., B 363: 557-572.
  • Delourme R., Bouchereau A., Hubert N., Renard M., Landry B.S. 1994. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor. Appl. Genet., 88: 741-748.
  • Delourme R., Falentin C., Huteau V., Clouet V., Horvais R., Gandon B., Specel S., Hanneton L., Dheu J.E., Deschamps M., Margale E., Vincourt P., Renard M. 2006. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor. Appl. Genet., 113: 1331-1345.
  • Delourme R., Foisset N., Horvais R., Barret P., Champagne G., Cheung W.Y., Landry B.S., Renard M. 1998. Characterization of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor. Appl. Genet., 97: 129-134.
  • Deschamps S., Campbell M.A. 2010. Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol. Breeding, 25: 553-570.
  • Dice L.R. 1945. Measures of the amount of ecologic association between species. Ecology, 26: 297-302.
  • Falentin C., Brégeon M., Lucas M.O., Deschamps M., Leprince F., Fournier M.T., Delourme R., Renard M. 2007a. Identification of fad2 mutations and development of Allele-Specific Markers for High Oleic acid content in rapeseed (Brassica napus L.). Proc. 12th International Rapeseed Congress, Wuhan, China, March 2007, 2: 117-119.
  • Falentin C., Brégeon M., Lucas M.O., Renard M. 2007b. Genetic markers for high oleic content in plants. International Patent Publication WO 2007/138444.
  • Foisset N., Delourme R., Barret P., Renard M. 1995. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor. Appl. Genet., 91: 756-761.
  • Formanová N., Li X.Q., Ferrie A.M.R., DePauw M., Keller W.A., Landry B., Brown G.G. 2006. Towards positional cloning in Brassica napus: generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. Plant Molecular Biology, 61: 269-281.
  • Fourmann M., Barret P., Renard M., Pelletier G., Delourme R., Brunel D. 1998. The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor. Appl. Genet., 96: 852-858.
  • Glenn T.C. 2011. Field giude to next-generation DNA sequencers. Molecular Ecology Resources, 11: 759-769.
  • Gupta P.K., Rustgi S., Kulwal P.L. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 57: 461-485.
  • Hasan M., Friedt W., Pons-Kühnemann J., Freitag N.M., Link K., Snowdon R.J. 2008. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor. Appl. Genet., 116: 1035-1049.
  • Howell P.M., Sharpe A.G., Lydiate D.J. 2003. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 46 (3): 454-460.
  • Hu J., Li G., Struss D., Quiros C.F. 1999. SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed, Brassica napus. Plant Breeding, 118: 145-150.
  • Hu X., Sullivan-Gilbert M., Kubik T., Danielson J., Hnatiuk N., Marchione W., Gupta M., Armstrong K., Thompson S. 2007. Development of molecular markers specific to the Ogura fertility restorer gene Rfo in canola (Brassica napus L.). Proc. 12th International Rapeseed Congress, Wuhan, China, March 2007, 2: 314-316.
  • Jaccard P. 1908. Nouvelles recherches sur la distribution florale. Soc. Vaud. Sci. Nat. Bull., 44: 223-270.
  • Jacob H.J., Lindpaintner K., Lincoln S.E., Kusumi K., Bunker R.K., Mao Y.P., Ganten D., Dzau V.J., Lander E.S. 1991. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell, 67: 213-224.
  • Jean M., Brown G.G., Landry B.S. 1997. Genetic mapping of nuclear fertility restorer genes for the ‘Polima’ cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers. Theor. Appl. Genet., 95: 321-328.
  • Jean M., Brown G.G., Landry B.S. 1998. Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the ‘Polima’ CMS of canola (Brassica napus L.). Theor. Appl. Genet., 97: 431-438.
  • Jondle R.J. 1992. Legal aspects of varietal protection using molecular markers. [W:] Applications of RAPD Technology to Plant Breeding. Proceedings of the Joint Plant Breeding Symposia Series, 1 November 1992, Minneapolis, USA: 50-52.
  • Jourdren C., Barret P., Brunel D., Delourme R., Renard M. 1996a. Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor. Appl. Genet., 93: 512-518.
  • Jourdren C., Barret P., Horvais R., Foisset N., Delourme R., Renard M. 1996b. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Molecular Breeding, 2: 61-71.
  • Kaur S., Cogan N.O.I., Ye G., Baillie R.C., Hand M.L., Ling A.E., Mcgearey A.K., Kaur J., Hopkins C.J., Todorovic M., Mountford H., Edwards D., Batley J., Burton W., Salisbury P., Gororo N., Marcroft S., Kearney G., Smith K.F., Forster J.W., Spangenberg G.C. 2009. Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theor. Appl. Genet., 120: 71-83.
  • Kesseli R.V., Paran I., Michelmore R.W. 1992. Efficient mapping of specifically targeted genomic regions and the tagging of these regions with reliable PCR-based genetic markers. [W:]Applications of RAPD Technology to Plant Breeding, Proceedings of the Joint Plant Breeding Symposia Series, 1 November 1992, Minneapolis, USA: 31-37.
  • Kircher M., Kelso J. 2010. High-throughput DNA sequencing – concepts and limitations. Bioessays, 32: 524-536.
  • Konieczny A., Ausubel F.A. 1993. A procedure for mapping Arabidopsis mutations using co-domi-nant ecotype-specific PCR-based markers. The Plant Journal, 4: 403-410.
  • Korte A., Farlow A. 2013. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9: 29.
  • Krishnasamy S., Makaroff C. 1993. Characterization of the radish mitochondrial orf B locus: possible relationship with male sterility in Ogura radish. Curr. Genet., 24: 156-163.
  • Krzymański J. 1997. Hodowla jakościowa roślin. Hodowla roślin – materiały z I Krajowej Konfe-rencji, 19-20 listopada 1997, Poznań: 333-337.
  • Leflon M., Brun H., Eber F., Delourme R., Lucas M.O., Vallée P., Ermel M., Balesdent M.H., Chèvre A.M. 2007. Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus. Theor. Appl. Genet., 115: 897-906.
  • Lewis C.M., Knight J. 2012. Introduction to genetic association studies. Cold Spring Harbor Protoc. doi:10.1101/pdb.top068163, 297-306.
  • Liersch A., Krótka K., Bartkowiak-Broda I. 2010a. Możliwości zastosowania markerów molekular-nych w badaniu dystansu genetycznego linii hodowlanych rzepaku ozimego. Rośliny Oleiste – Oilseed Crops, XXXI (2): 221-228.
  • Liersch A., Popławska W., Ogrodowczyk M., Krótka K., Bartkowiak-Broda I., Bocianowski J. 2010b. Oszacowanie dystansu genetycznego linii rodzicielskich mieszańców F1 rzepaku ozimego oraz określenie związku z dystansem fenotypowym i efektem heterozji. Rośliny Oleiste – Oilseed Crops, XXXI (2): 229-242.
  • Litt M., Luty J.A. 1989. A hypervariable microsatellite revealed by in vitro amplification of a di-nucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet., 44: 397-401.
  • Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. 2012. Comparison of next-gene-ration sequencing systems. Journal of Biomedicine and Biotechnology, 2012: Article ID 251364.
  • Lombard V., Baril C.P., Dubreuil P., Blouet F., Zhang D. 2000. Genetic relationships and finger-printing of rapeseed cultivars using AFLP: consequences for varietal registration. Crop Sci., 40: 1417-1425.
  • Lu Y.H., Arnaud D., Belcram H., Falentin C., Rouault P., Piel N., Lucas M.O., Just J., Renard M., Delourme R., Chalhoub B. 2012. A dominant point mutation in a RINGv E3 ubiquitin ligase homoeologous gene leads to cleistogamy in Brassica napus. The Plant Cell, 24: 4875-4891.
  • Mackay I., Powell W. 2007. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 12: 57-63.
  • Manzanares-Dauleux M.J., Delourme R., Baron F., Thomas G. 2000. Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor. Appl. Genet., 101: 885-891.
  • Marchini J., Cardon L.R., Phillips M.S., Donnelly P. 2004. The effects of human population structure on large genetic association studies. Nature Genetics, 36: 512-517.
  • Matuszczak M. 2004. Ochrona praw hodowców odmian rzepaku – koncepcja odmiany w istocie pochodnej (EDV). Rośliny Oleiste – Oilseed Crops, XXV (2): 655-669.
  • Matuszczak M. 2010. Identyfikacja loci cech jakościowych rzepaku ozimego (Brassica napus L. var. oleifera). Praca doktorska, ZGiHRO IHAR-PIB, Poznań.
  • Matuszczak M., Tokarczuk I., Spasibionek S., Bartkowiak-Broda I. 2013. Analiza DNA rzepaku za pomocą markera specyficznego dla mutacji w genie fad2. Konferencja Naukowa „Nauka dla hodowli i nasiennictwa roślin uprawnych”, Zakopane, 4-8.02.2013, Streszczenia: 147-148.
  • Michelmore R.W., Paran I., Kesseli R.V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA, 88: 9828-9832.
  • Mikołajczyk K. 2007. Nowe osiągnięcia analiz genetycznych w hodowli molekularnej rzepaku. Rośliny Oleiste – Oilseed Crops, XXVIII (1): 27-38.
  • Mikołajczyk K. 2008. Zastosowanie genomiki strukturalnej i funkcjonalnej w nowoczesnej hodowli roślin z rodziny Brassicaceae. Rośliny Oleiste – Oilseed Crops, XXIX (2): 273-290.
  • Mikołajczyk K., Bartkowiak-Broda I., Dabert M., Karłowski W.M., Spasibionek S. 2012a. Patent nr PAT.211126 udzielony dnia 11.05.2012 r., Urząd Patentowy Rzeczpospolitej Polskiej.
  • Mikołajczyk K., Bartkowiak-Broda I., Dabert M., Podkowiński J. 2012b. Patent nr PAT.212433 udzielony dnia 02.11.2012 r., Urząd Patentowy Rzeczpospolitej Polskiej.
  • Mikołajczyk K., Bartkowiak-Broda I., Popławska W., Spasibionek S., Dobrzycka A., Dabert M. 2012c. A multiplex fluorescent PCR assay in molecular breeding of oilseed rape. [W:] Abdu-rakhmonov I. (ed.). Plant Breeding. InTech, http://www.intechopen.com/books/plant-breeding/ a-multiplex-fluorescent-pcr-assay-in-molecular-breeding-of-oilseed-rape.
  • Mikołajczyk K., Dabert M., Karłowski W.M., Spasibionek S., Cegielska-Taras T., Bartkowiak-Broda I. 2007. Development of allele-specific SNP markers for the new low-linolenic mutant of winter oilseed rape. Proc. 12th International Rapeseed Congress, Wuhan, China, March 2007, 2: 282-284.
  • Mikołajczyk K., Dabert M., Karłowski W.M., Spasibionek S., Nowakowska J., Cegielska-Taras T., Bartkowiak-Broda I. 2010a. Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breeding, 129: 502-507.
  • Mikołajczyk K., Dabert M., Nowakowska J., Podkowiński J., Popławska W., Bartkowiak-Broda I. 2008. Conversion of the RAPD OPC021150 marker of the Rfo restorer gene into a SCAR marker for rapid selection of oilseed rape. Plant Breeding, 127: 647-649.
  • Mikołajczyk K., Dobrzycka A., Podkowiński J., Popławska W., Spasibionek S., Bartkowiak-Broda I. 2010b. A multiplex PCR assay for identification of the ogura male sterile cytoplasm and the Rfo restorer gene among oilseed rape breeding forms. Rośliny Oleiste – Oilseed Crops, XXXI (2): 201-210.
  • Mikołajczyk K., Matuszczak M., Piętka T., Bartkowiak-Broda I., Krzymański J. 1998. Zastosowanie markerów DNA do badań odmian składników mieszańcowych rzepaku. Rośliny Oleiste – Oilseed Crops, XIX (2): 463-471.
  • Mohan M., Nair S., Bhagwat A., Krishna T.G., Yano M., Bhatia C.R., Sasaki T. 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding, 3: 87-103.
  • Nei M., Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA, 76: 5269-5273.
  • Pilet M.L., Delourme R., Foisset N., Renard M. 1998a. Identification of loci contributing to quanti-tative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Theor. Appl. Genet., 96: 23-30.
  • Pilet M.L., Delourme R., Foisset N., Renard M. 1998b. Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor. Appl. Genet., 97: 398-406.
  • Pilet M.L., Duplan G., Archipiano H., Barret P., Baron C., Horvais R., Tanguy X., Lucas M.O., Renard M., Delourme R. 2001. Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci., 41: 197-205.
  • Poland J.A., Rife T.W. 2012. Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome, 5: 92-102.
  • Quail M.A., Smith M., Coupland P., Otto T.D., Harris S.R., Connor T.R., Bertoni A., Swerdlow H.P., Gu Y. 2012. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13: 341.
  • Rafalski A. 2002. Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 5: 94-100.
  • Rafalski J.A., Tingey S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet., 9: 275-279.
  • Rahman M., Sun Z., McVetty P.B.E., Li G. 2008. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor. Appl. Genet., 117: 895-904.
  • Rogers J.S. 1972. Measures of genetic similarity and genetic distance. Studies in Genetics VII. University of Texas Publ., 7213: 145-153.
  • Shiran B., Azimkhani R., Mohammadi S., Ahmadi M.R. 2006. Potential use of Random Amplified Polymorphic DNA marker in assessment of genetic diversity and identification of rapeseed (Brassica napus L.) cultivars. Biotechnology, 5 (2): 153-159.
  • Snowdon R.J., Friedt W. 2004. Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breeding, 123: 1-8.
  • Song K.M., Osborn T.C., Williams P.H. 1988. Brassica taxonomy based on nuclear fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor. Appl. Genet., 75: 784-794.
  • Sokal R.R., Michener C.D. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull., 38: 1409-1438.
  • Somers D.J., Rakow G., Prabhu V.K., Friesen K.R. 2001. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome, 44: 1077-1082.
  • Spasibionek S. 2006. New mutants of winter rapeseed (Brassica napus L.) with changed fatty acid composition. Plant Breeding, 125: 259-267.
  • Sztuba-Solińska J. 2005. Systemy markerów molekularnych i ich zastosowanie w hodowli roślin. Kosmos – Problemy Nauk Przyrodniczych, 54 (2-3): 227-239.
  • Tanksley S.D., Young N.D., Paterson A.H., Bonierbale M.W. 1989. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology, 7: 257-264.
  • Uzunova M., Ecke W., Weissleder K., Röbbelen G. 1995. Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed gluco-sinolate content. Theor. Appl. Genet., 90 (2): 194-204.
  • Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 23 (21): 4407-4414.
  • Walsh J.A., Sharpe A.G., Jenner C.E., Lydiate D.J. 1999. Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor. Appl. Genet., 99: 1149-1154.
  • Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res. 18 (22): 6531-6535.
  • Xiao S., Xu J., Li Y., Zhang L., Shi S., Shi S., Wu J., Liu K. 2007. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 50: 611-618.
  • Young N.D., Zamir D., Ganal M.W., Tanksley S.D. 1988. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics, 120: 579-585.
  • Yu C.Y., Hu S.W., Zhao H.X., Guo A.G., Sun G.L. 2005. Genetic distances revealed by morpho-logical characters, isozymes, proteins and RAPD markers and their relationships with hybrid performance in oilseed rape (Brassica napus L.). Theor. Appl. Genet., 110: 511-518.
  • Zabeau M., Vos P. 1993. European Patent Publication EP 0534858.
  • Zhao J., Meng J. 2003. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor. Appl. Genet., 106: 759-764.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-58371f2d-282b-474d-a74b-9db007b075fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.