PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 1 |

Tytuł artykułu

Natural attenuation potential of polychlorinated biphenyl-polluted marine sediments

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The marine environment in Kuwait is polluted with various hazardous chemicals of industrial origin. These include petroleum hydrocarbons, halogenated compounds and heavy metals. Bioremediation with dedicated microorganisms can be effectively applied for reclamation of the polluted marine sediments. However, information on the autochthonous microbes and their ecophysiology is largely lacking. We analyzed sediments from Shuwaikh harbor to detect polychlorinated biphenyls (PCBs) and total petroleum hydrocarbons (TPHs). Then we adopted both culture-dependent and culture-independent (PCR-DGGE) approaches to identify bacterial inhabitants of the polluted marine sediments from Shuwaikh harbor. The chemical analysis revealed spatial variation among the sampling stations in terms of total amount of PCBs, TPHs and the PCB congener fingerprints. Moreover, in all analyzed sediments, the medium-chlorine PCB congeners were more abundant than the low-chlorine and high-chlorine counterparts. PCR-DGGE showed the presence of members of the Proteobacteria, Spirochaetes, Firmicutes and Bacteroidetes in the analyzed sediments. However, Chloroflexi-related bacteria dominated the detected bacterial community. We also enriched a biphenyl-utilizing mixed culture using the W2 station sediment as an inoculum in chemically defined medium using biphenyl as a sole carbon and energy source. The enriched mixed culture consisted mainly of the Firmicute Paenibacillus spp. Sequences of genes encoding putative aromatic ring-hydroxylating dioxygenases were detected in sediments from most sampling stations and the enriched mixed culture. The results suggest the potential of bioremediation as a means for natural attenuation of Shuwaikh harbor sediments polluted with PCBs and TPHs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

1

Opis fizyczny

p.37-48,fig.,ref.

Twórcy

autor
  • Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
autor
  • Department of Biological Sciences, College of Science, Kuwait University, Kuwait
autor
  • Department of Earth and Environmental Sciences, College of Science, Kuwait University, Kuwait
autor
  • Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain

Bibliografia

  • Adler A.C., M.M. Haggblom, S.R. Oppenheimer and L.Y. Young. 1993. Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ. Sci. Technol. 27: 530–538.
  • Ahmed M.H., M. El-Raey, S.M. Nasr and O.E. Frihy. 1998. Socioeconomic impact of pollution on ecosystems of the Arabian Gulf. Environ. Int. 24(1–2): 229–237.
  • Al-Awadhi H., N. Dashti, M. Khanafer, D. AL-Mailem, N. Ali and S. Radwan. 2013. Bias problems in culture-independent analysis of environmental bacterial communities: a representative study on hydrocarbonoclastic bacteria. Springerplus 2: 369. doi: 10.1186/2193-1801-2-369.
  • Al-Muzaini S., M.U. Beg, A. Al-Mutairi and A. Al-Mullalah. 1995. Sea water quality at industrial discharge zone. Water Sci. Technol. 32: 21–26.
  • Altschul S.F., L. Thomas, A.A. Madden, Z.Z. Schäffer, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.
  • Bedard D.L. 2008. A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls-from sediment to defined medium. Annu. Rev. Microbiol. 62: 253–270.
  • Beg M.U., T. Saeed, S. Al-Muzaini, K.R. Beg, T. Al-Obaid andA. Kurian. 2001. Extraction, fractionation, and toxicity determinationof organic contaminants in sediment from coastal area receiving indu-strial effluents in Kuwait. Bull. Environ. Contam. Toxicol. 67: 881–888.
  • Beolchini F., A. Dell’Anno, L. De Propris, S. Ubaldini, F. Cerrone and R. Dnovaro. 2009. Auto-and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74: 1321–1326.
  • Black E.M., M.S. Chimenti and C.L. Just. 2017. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen- transforming microorganisms in upper Mississippi river sediment. Peer J. 5: e3536. doi:10.7717/peerj.3536.
  • Borja J., D.M. Taleon, J. Auresenia and S. Gallardo. 2005. Polychlorinated biphenyls and their biodegradation. Process Biochem. 40: 1999–2013.
  • Bush B. and M.J. Kadlec. 1995. Dynamics of PCBs in the aquatic environment. Great Lakes Res. 1(2): 24–30.
  • Callaghan A.V., B.E. Morris, I.A. Pereira, M.J. Mclnerney,R.N. Austin, J.T. Groves, J.J. Kukor, J.M. Suflita, L.Y. Young,G.J. Zylstra and others. 2012. The genome sequence of Desulfatibacillum alkanivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ. Microbiol. 14(1): 101–113.
  • Clark R. 2001. Marine Pollution. Oxford University Press, Oxford.
  • Coil D.R., J.H. Badger, H.C. Forberger, F. Riggs, R. Madupa,N. Fedorova, N. Ward, F.T. Robb and J.A. Eisen. 2014. Complete genome sequence of the extreme thermophile Dictyoglomus thermophilum H-6-12. Genome Announc. 2(1): e00109-14.
  • Correa P.A., L. Lin, C.L. Just, D. Hu and K.C. Hornbuckle. 2010. The effects of individual PCB congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes. Environ. Int. 36: 901–906.
  • Daane L.L., I. Harjono, S.M. Barns, L.A. Launen, N.J. Palleron and M.M. Häggblom. 2002. PAH-degradaion by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plant. Int. J. Syst. Evol. Microbiol. 52(1): 131–139.
  • Dell’Anno A., F. Beolchini, L. Rocchetti, G.M. Luna and R. Danovaro. 2012. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments. Environ Pollut. 167: 85–92.
  • Dennis P., E.A. Edwards, S.N. Liss, R. Fulthorpe. 2003. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl. Environ. Microbiol. 69: 769–778.
  • Fowler S.W., J.W. Readman, B. Oregioni, J.P. Villeneuve and K. McKay. 1993. Petroleum hydrocarbons and trace metals in near shore Gulf sediments and biota before and after the 1991 war: An asses-sment of temporal and spatial trends. Mar. Pollut. Bull. 27: 171–182.
  • Furukawa K. and H. Fujihara. 2008. Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J. Biosci. Bioeng. 105(5): 433–449.
  • Gevao B., A.A. Aba, A.N. Al-Ghadban and S. Uddin. 2012. Depositional history of polychlorinated biphenyls in a dated sediment core from the Northwestern Arabian Gulf. Arch. Environ. Contam. Toxicol. 62: 549–556.
  • Gevao B., M.U. Beg, A. Al-Omair, M. Helaleh and J. Zafar. 2006. Spatial distribution of polychlorinated biphenyls in coastal marine sediments receiving industrial effluents in Kuwait. Arch. Environ. Contam. Toxicol. 50: 166–174.
  • Helaleh M., A. Al-Rashdan and A. Ibtisam. 2012. Simultaneous analysis of organochlorinated pesticides (OCPS) and polychlorinated biphenyls (PCBs) from marine samples using automated pressurized liquid extraction (PLE) and Power PrepTM clean-up. Talanta 94: 44–49.
  • Ismail W. and J. Gescher. 2012. Epoxy-coenzyme A thioester pathways for degradation of aromatic compounds. Appl. Environ. Microbiol. 78(15): 5043–5051.
  • Kitagawa W., A. Suzuki, T. Hoaki, E. Masai and M. Fukuda. 2001. Multiplicity of aromatic ring hydroxylation dioxygenase genes in a strong PCB Degrader, Rhodococcus sp. strain RHA1 demonstrated by denaturing gradient gel electrophoresis. Biosci. Biotechnol. Biochem. 65(8): 1907–1911.
  • Knoblauch C., K. Sahm and B.B. Jøgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49(4): 1631–1643.
  • Kolar A.B., D. Hrsak, S. Fingler, H. Cetkovic, I. Petric and N.U. Kolic. 2007. PCB-degrading potential of aerobic bacteria enriched from marine sediments. Int. Biodeterior. Biodegradation 60: 16–24.
  • Koubek J., M. Makova, T. Macek and O. Uhlik. 2013. Diversity of chlorobiphenyl-metabolization bacteria and their biphenyl dioxygenases in contaminated sediment. Chemosphere 93: 1548–1555.
  • LaRoe S.L., A.D. Fricker and D.L. Bedard. 2014. Dehalococcoides mccarty strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination process N. Environ. Sci. Technol. 48(16): 9187–96.
  • Li A., K.J. Rockne, N. Sturchio, W. Song, J.C. Ford and H. Wei. 2009. PCBs in sediments of the Great Lakes-Distribution and trends, homolog and chlorine patterns, and in situ degradation. Environ. Pollut. 157: 141–147.
  • Liang Y., A. Martinez, K.C. Hornbuckle and T.E. Mattes. 2014. Potential for polychlorinated biphenyl biodegradation in sediments from Indiana Harbor and Ship Canal. Int. Biodeterior. Biodegradation 89: 50–57.
  • Mahmoud H.M., R.H. Al-Hasan, N.A. Sorkhoh, M. Eliyas and S. Radwan. 2009. Attenuation of oil pollutants in the Arabian Gulf water by bacteria naturally associated with live fish. Int. Biodeterior. Biodegradation 63: 615–620.
  • Mavromatis K., N. Ivanova, I. Anderson, A. Lykidis, S.D. Hooper, H. Sun, V. Kunin, A. Lapidus, P. Hugenholtz, B. Patel and others. 2009. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS One 4(1): e4192. doi: 10.1371/journal.pone.0004192.
  • McGenity T.J., B.D. Folwell, B.A. McKew and G.O. Sanni. 2012. Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat. Biosyst. 8: 10–28.
  • Michel J. 2011. 1991 Gulf war oil spill, pp. 1127–1132. In: Fingas M (ed), Oil Spill Science and Technology. Elsevier, USA.
  • Mikesková H., C. Novotny and K. Svobodova. 2012. Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl. Microbiol. Biotechnol. 95(4): 861–870.
  • Nam I.H., C.M. Chon, K.Y. Jung and J.G. Kim. 2014. Biodegradation of biphenyl and and 2-chlorobiphenyl by a Pseudomonas sp. KM-04 isolated from PCBs-contaminated coal mine soil. Bull. Environ. Contam. Toxicol. 93(1): 89–94.
  • Passatore L., S. Rossettic, A. Juwarkard and A. Massaccia. 2014. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. J. Hazard. Mater. 278: 189–202.
  • Ross G. 2004. The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicol. Environ. Saf. 59: 275–291.
  • Sakai M., S. Ezaki, N. Suzuki and R. Kurane. 2005. Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Appl. Microbiol. Biotechnol. 68(1): 111–116.
  • Schafer H. and G. Muyzer. 2001. Denaturing gradient gel electrophoresis in marine microbiology ecology, pp. 425–468. In: Paul J.H. (ed), Methods in Microbiology. Vol 30 Marine Microbiology. Academic Press, London.
  • Shunbo F. and P. Literathy. 1984. Baseline studies of oil and non-oil pollutants in the territorial waters of Kuwait. Kuwait Institute for Scientific Research, Final Report no. KISR/PPI 1662.
  • Sydow M., M. Owsianiak, Z. Szczepaniak, G. Framski, B.F. Smets, L. Ławniczak, P. Lisiecki, A. Szulc, P. Cyplik and L. Chrzanowski. 2016. Evaluating robustness of diesel-degrading bacterial consortium isolated from contaminated soil. N. Biotechnol. 33(6): 852–859.
  • USEPA, United States Environmental Protection Agency. 1978. Total petroleum hydrocarbons in sediment, chemical analysis metho-dology, USA.
  • Van Hamme J.D., A. Singh and O.P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67: 503–549.
  • Wang S. and J. He. 2013. Phylogenetically distinct bacteria involve extensive dechlorination of Aroclor 1260 in sediment-free cultures. PLoS One 8(3): e59178. doi: 10.1371/journalpone.0059178.
  • Zanaroli G., A. Balloi, A. Negroni, L. Borruso, D. Daffonochio and F. Fava. 2012. A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions. J. Hazard. Mater. 209–210: 449–457.
  • Zennegg M., M. Kohler, P. Hartmann, M. Sturm, E. Gujer,P. Schmid, A.C. Gerecke, N.V. Heeb, H.P. Kohler and W. Giger. 2007. The historical record of PCB and PCDD/F deposition at Greifensee, a lake of the Swiss plateau, between 1848 and 1999. Chemosphere 67(9): 1754–1761.
  • Zhang J., Y. Yang, L. Zhao, Y. Li, S. Xie and Y. Liu. 2015. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl. Microbiol. Biotechnol. 99(70): 3291–3302

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-580fa335-096b-4758-90a5-22ab923b805e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.