PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 60 | 1 |

Tytuł artykułu

Xenoxylon synecology and palaeoclimatic implications for the Mesozoic of Eurasia

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The distribution of fossil wood genera has been demonstrated to be an effective proxy for Mesozoic terrestrial climates. In this study, we investigated the phytocoenoses, which were associated with Xenoxylon confirmed to be a marker for a cool and/or wet climate in a boreal hemisphere (i.e., Xenoxylon-phytocoenoses) during the Mesozoic, using specimens of fossil wood. It was confirmed that Xenoxylon co-occurs more often with some wood genera than with others. For example, Protocedroxylon, a wood that is most likely related to the Pinaceae, is the genus most often associated with Xenoxylon-phytocoenoses. Although Taxodioxylon is also found in Xenoxylon-phytocoenoses, it is not found, however, as consistently as Protocedroxylon. The distribution and diversity of Xenoxylon-phytocoenoses changed throughout the Mesozoic. During the Late Triassic and Late Cretaceous, Xenoxylon-phytocoenoses had low diversity and were restricted to higher palaeolatitudes during the Late Cretaceous. However, during the Early to Middle Jurassic, Xenoxylon- phytocoenoses were distributed much farther south, while their diversity concomitantly increased sharply. From the Late Jurassic to the Early Cretaceous, the distribution of Xenoxylon-phytocoenoses moved northward in Europe and even more so in East Asia. The changes in the distribution of Xenoxylon-phytocoenoses are in agreement with changes in both global and regional climates. Our results also demonstrated that, within the Xenoxylon distribution range, the corresponding phytocoenoses were differentiated along a latitudinal gradient and according to the global climate change patterns during the Mesozoic.

Wydawca

-

Rocznik

Tom

60

Numer

1

Opis fizyczny

p.245-256,fig.,ref.

Twórcy

autor
  • Division of Polar Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 406-840, Republic of Korea
autor
  • Universite Claude Bernard-Lyon 1 and UMR5276 of the CNRS, F69622, France
autor
  • Department of Life Sciences, Chonbuk National University, 570-752, Republic of Korea

Bibliografia

  • Amiot, R., Wang, X., Zhou, Z., Wang, X., Buffetaut, E., Lécuyer, C., Ding, Z., Fluteau, F., Hibino, T., Kusuhashi, N., Mo, J., Suteethorn, V., Wang, Y., Xu, X., and Zhang, F. 2011. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates. Proceedings of the National Academy of Sciences USA 108: 5179–5183.
  • Arnold, C.A. 1953. Silicified plant remains from the Mesozoic and Tertiary of Western North America. II. Some fossil woods from Alaska. Papers of the Michigan Academy of Sciences, Arts and Letters 38: 8–20.
  • Bailey, I.W. 1953. Evolution of the tracheary tissue of land plants. American Journal of Botany 40: 4–8.
  • Benson, R.B.J., Butler, R.J., Lindgren, J., and Smith, A.S. 2009. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society B 277: 829–834.
  • Brison, A.-L., Philippe, M., and Thévenard, F. 2001. Are Mesozoic wood growth rings climate-induced? Paleobiology 27: 531–538.
  • Carter, A. and Bristow, C. 2003. Linking hinterland evolution and continental basin sedimentation using detrital zircon themochronology: a study of the Khorat Plateau Basin, Eastern Thailand. Basin Research 15: 1–15.
  • Chandler, M.A., Rind, D., and Ruedy, R. 1992. Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. Geological Society of America Bulletin 104: 543–559.
  • Dromart, G., Garcia, J.-P., Picard, S., Atrops, F., Lécuyer, C., and Sheppard, S. 2003. Ice age at the Middle–Late Jurassic transition? Earth and Planetary Science Letters 213: 205–220.
  • Egawa, K. and Lee, Y.I. 2011. K-Ar dating of illites for time constraint on tectonic burial metamorphism of the Jurassic Nampo Group (West Korea). Geosciences Journal 15: 131–135.
  • Galli, M.T., Jadoul, F., Bernasconi, S.M., and Weissert, H. 2005. Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 216: 203–214.
  • Garcia, J.-P., Philippe, M., and Gaumet, F. 1998. Fossil wood in Middle–Upper Jurassic marine sedimentary cycles of France: relations with climate, sea-level dynamics, and carbonate-platform environments. Palaeogeography, Palaeoclimatology, Palaeoecology 141: 199–214.
  • Golonka, J. and Ford, D. 2000. Pangean (Late Carboniferous–Middle Jurassic) paleoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology 161: 1–34.
  • Gomez, J.J. and Goy, A. 2011. Warming driven mass extinction in the Early Toarcian (Early Jurassic) of northern and central Spain. Correlation with other time-equivalent European sections. Palaeogeography, Palaeoclimatology, Palaeoecology 306: 176–195.
  • Gordon, A.G. 1932. The Anatomical Structure of Mesozoic Plants from the Bituminous Sands of the McMurray Formation. 116 pp. Unpubliehed M.Sc. Thesis, University of Alberta, Edmonton.
  • Gothan, W. 1905. Zur Anatomie lebender und fossiler Gymnospermen-Hölzer. Abhandlungen preußische geologische Landesanstalt 44: 1–108.
  • Gothan, W. 1910. Die fossilen Holzreste von Spitzbergen. Kungliga Svenska Vetenskapsakademiens Handlingar 45: 1–56.
  • Gröcke, D.R., Price, G.D., Ruffell, A.H., Mutterlose, J., and Baraboshkin, E. 2003. Isotopic evidence for Late Jurassic–Early Cretaceous climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 202: 97–118.
  • Herman, A.B. and Spicer, R.A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380: 330–333.
  • Holden, R. 1913. Contributions to the anatomy of Mesozoic conifers. No. I. Jurassic coniferous woods from Yorkshire. Annals of Botany 27: 533–545.
  • Jarmolenko, A.V. 1933. The experimental application of stem secondary wood anatomy to investigation of conifer phylogeny. Soviet Botany 6: 46–63.
  • Joral, F.G., Gómez, J.J., and Goy, A. 2011. Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in Northern and Central Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 302: 367–380.
  • Kim, K., Jeong, E.K., Kim, J.H., Paek, S.D., Suzuki, M., and Philippe, M. 2005. Coniferous fossil woods from the Jogyeri Formation (Upper Triassic) of the Nampo Group, Korea. International Association of Wood Anatomists Journal 26: 253–265.
  • Mailliot, S., Mattioli, E., Bartolini, A., Baudin, F., Pittet, B., and Guex, J. 2009. Late Pliensbachian–Early Toarcian (Early Jurassic) environmental changes in an epicontinental basin of NW Europe (Causses area, central France): a micropaleontological and geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology 273: 346–364.
  • Marynowski, L., Philippe, M., Zatoń, M., and Hautevelle, Y. 2008. Systematic relationships of the Mesozoic wood genus Xenoxylon: an integrative biomolecular and palaeobotanical approach. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 247: 177–189.
  • Maurer, F., van Buchem, F.S.P., Eberli, G.P., Pierson, B.J., Raven, M.J., Larsen, P.-H., Al-Husseini, M.I., and Vincent, B. 2012. Late Aptian long-lived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nova 25: 87–94.
  • Meijer, J.J.F. 2000. Fossil woods from the Late Cretaceous Aachen Formation. Review of Palaeobotany and Palynology 112: 297–336.
  • Mull, C.G., Houseknecht, D.W., and Bird, K.J. 2003. Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska. U.S. Geological Survey Professional Paper 1673: 1–51.
  • Müller-Stoll, W.R. and Schultze-Motel, J. 1989. Gymnospermen-Hölzer des deutschen Jura. teil 2: die protopinoiden Hölzer. Zeitschrift der deutschen geologischen Gesellschaft 140: 53–71.
  • Nadjafi, A. 1982. Contribution à la connaissance de la flore ligneuse du Jurassique d’Iran [in French]. 111 pp. Unpublished Ph.D. Thesis. Paris VI University, Paris.
  • Nathorst, A.G. 1897. Zur mesozoischen Flora Spitzbergens. Kungliga Svenska Vetenskapsakademiens Handligar 30: 1–77.
  • Nishida, M. and Nishida, H. 1986. Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien III. Petrified plants from the Upper Cretaceous of Saghalien (1). Botanical Magazine, Tokyo 99: 191–204.
  • Nishida, M., Nishida, H., and Suzuki, Y. 1993. On some petrified plants from the Cretaceous of Choshi, Chiba Prefecture VIII. Journal of Japanese Botany 68: 289–299.
  • Ogura, Y., Kobayashi, T., and Maeda, S. 1951. Discovery of erect stumps of Xenoxylon latiporosum in the Jurassic Tetori series in Japan. Transactions and Proceedings of the Palaeontological Society of Japan 4: 113–119.
  • Oh, C. 2010. Conifer Fossil Woods of the Cretaceous in Northeast Asia: Occurrences and Paleobiological Implications. 183 pp. Partly published Ph.D. Thesis. Chonbuk National University, Korea.
  • Oh, C., Legrand, J., Kim, K., Philippe, M., and Paik, I.S. 2011. Fossil wood diversity gradient and Far-East Asia palaeoclimatology during the Late Triassic–Cretaceous interval. Journal of Asian Earth Sciences 40: 710–721.
  • Parrish, J.T. and Spicer, R.A. 1988. Middle Cretaceous wood from the Nanushuk Group, Central North Slope, Alaska. Palaeontology 31: 19–34.
  • Philippe, M. 1993. Nomenclature générique des trachéidoxyles mésozoïques à champs araucarioïdes. Taxon 42: 74–80.
  • Philippe, M. 1994. Radiation précoce des conifères Taxodiaceae et bois affines du Jurassique de France. Lethaia 27: 67–75.
  • Philippe, M. 1995. Bois fossiles du Jurassique de Franche-Comté (nord-est de la France): systématique et biogeographie. Palaeontographica B 236: 45–103.
  • Philippe, M. and Bamford, M.K. 2008. A key to morphogenera used for Mesozoic conifer-like woods. Review of Palaeobotany and Palynology 148: 184–207.
  • Philippe, M. and Harland, M. 2007. The diversification of wood in Mesozoic terrestrial ecosystems. In: G. Sun (ed.), Proceedings of the International Symposium on Paleontology and Stratigraphy in Benxi of China, 71. Benxi, Liaoning Province.
  • Philippe, M. and Hayes, P. 2010. Reappraisal of two of Witham’s species of fossil wood with taxonomical and nomenclatural notes on Planoxylon Stopes, Protocedroxylon Gothan and Xenoxylon Gothan. Review of Palaeobotany and Palynology 162: 54–62.
  • Philippe, M. and Thévenard, F. 1996. Distribution and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of Western Europe. Review of Palaeobotany and Palynology 9: 353–370.
  • Philippe, M., Bamford, M., McLoughlin, S., Alves, L.S.R., Falcon-Lang, H.J., Gnaedinger, S., Ottone, E.G., Pole, M., Rajanikanth, A., Shoemaker, R.E., Torres, T., and Zamuner, A. 2004. Biogeographic analysis of Jurassic–Early Cretaceous wood assemblages from Gondwana. Review of Palaeobotany and Palynology 129: 141–173.
  • Philippe, M., Jiang, H.-E., Kim, K., Oh, C., Gromyko, D., Harland, M., Paik, I.-S., and Thévenard, F. 2009. Structure and diversity of the Mesozoic wood genus Xenoxylon in Far East Asia: implications for terrestrial palaeoclimates. Lethaia 42: 393–406.
  • Philippe, M., Thévenard, F., Nosova, N., Kim, K., and Naugolnykh, S. 2013. Systematics of a palaeoecologically significant boreal Mesozoic fossil wood genus, Xenoxylon Gothan. Review of Palaeobotany and Palynology 193: 128–140.
  • Poole, I. and Ataabadi, M.M. 2005. Conifer woods of the Middle Jurassic Hojedk Formation (Kerman Basin) Central Iran. International Association of Wood Anatomists Journal 26: 489–505.
  • Poole, I. and Francis, J.E. 2000. The first record of fossil wood of Winteraceae from the Upper Cretaceous of Antarctica. Annals of Botany 85: 307–315.
  • Pucéat, E., Lécuyer, C., Sheppard, S.M.F., Dromart, G., Reboulet, S., and Grandjean, P. 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18: 7-1–7-12.
  • Renner, S. 2009. Gymnosperms. In: S.B. Hedges and S. Kumar (eds.), The Time Tree of Life, 157–160. Oxford University Press, New York.
  • Rößler, R., Philippe, M., van Konijnenburg-van Cittert, J.H.A., McLoughlin, S., Sakala, J., and Zijlstra, G. (coordinating authors), and 35 contributors. 2014. Which name(s) should be used for Araucaria-like fossil wood? Results of a poll. Taxon 63: 177–184.
  • Ruckwied, K. and Götz, A.E. 2009. Climate change at the Triassic/Jurassic boundary: palynological evidence from the Furkaska section (Tatra Mountains, Slovakia). Geologica Carpathica 60: 139–149.
  • Selmeier, A. and Grosser, D. 2011. Lower Cretaceous conifer drift wood from Sverdrup Basin, Canadian Arctic Archipelago. Zitteliana A 51: 19–35.
  • Shilkina, I.A. [Šilkina, I.A.] 1967. Fossil woods of Franz-Josef Land [in Russian]. Acta Botanica Institut Komarov (Akademia nauk SSSR), ser. 8, Paleobotanika 6: 29–50.
  • Shilkina, I.A. [Šilkina, I.A.] and Khudayberdyev, R. [Hudajberdyev, R.] 1971. Reappraisal of genera Protocedroxylon and Xenoxylon [in Russian]. Paleobotanica Uzbekistana 2: 117–133.
  • Shimakura, M. 1936. Studies on fossil woods from Japan and adjacent lands, contribution I. Science Reports of the Tohoku Imperial University 18: 267–298.
  • Simms, M.J. and Ruffell, A.H. 1989. Synchroneity of climatic change and extinctions in the Late Triassic. Geology 17: 165–268.
  • Sliter, W.V. 1979. Cretaceous foraminifers from the North Slope of Alaska. In: T.S. Ahlbrandt (ed.), Preliminary Geologic, Petrologic, and Paleontologic Results of the Study of Nanushuk Group Rocks North Slope, Alaska. U.S. Geological Survey Circular 794: 147–157.
  • Spicer, R.A. and Parrish, J.T. 1986. Paleobotanical evidence for cool North Polar climates in middle Cretaceous (Albian–Cenomanian) time. Geology 14: 703–706.
  • Spicer, R.A. and Parrish, J.T. 1990. Latest Cretaceous woods of the Central North Slope, Alaska. Palaeontology 33: 225–242.
  • Spicer, R.A., Rees, P.M., and Chapman, J.L. 1993. Cretaceous phytogeography and climate signals. Philosophical Transactions of the Royal Society of London B 341: 27–286.
  • Suzuki, M. and Terada, K. 1992. Xenoxylon fossil woods from the Lower Cretaceous Akaiwa Subgroup of Shiramine, Central Japan. Journal of Phytogeography and Taxonomy 40: 91–97.
  • Suzuki, M., Goto, M., and Akahane, H. 1982. Some fossil woods from the Kuruma Group of Toyama and Niigata Prefectures. Annals of Science of the Kanazawa University 19: 43–61.
  • Takahashi, K. and Suzuki, M. 2003. Dicotyledonous fossil wood flora and early evolution of wood characters in the Cretaceous of Hokkaido, Japan. International Association of Wood Anatomists Journal 24: 269–309.
  • Terada, K., Nishida, H., and Sun, G. 2011. Fossil woods from the Upper Cretaceous to Paleocene of Heilongjang (Amur) River area of China and Russia. Global Geology 14: 192–208.
  • Tsunada, K. and Yamazaki, S. 1984. Mesozoic coniferous woods and phytogeography. Memoirs of the School of Science and Engineering, Waseda University 48: 117–136.
  • Vozenin-Serra, C. and Privé-Gill, C. 1991. Les terrasses alluviales pléistocènes du Mékong (Cambodge). I Les bois silicifiés homoxylés récoltés entre Stung-Treng et Snoul. Review of Palaeobotany and Palynology 67: 115–132.
  • Vogellehner, D. 1968. Zur Anatomie und Phylogenie mesozoischer Gymnospermenhölzer, Beitrag 7: Prodromus zu einer Monographie der Protopinaceae. II: die protopinoiden Hölzer der Jura. Palaeontographica B 124: 125–162.
  • Wang, Y.-D., Zhang, W., and Saiki, K. 2000. Fossil woods from the Upper Jurassic of Qitai, Junggar Basin, Xinjiang, China. Acta Palaeontologica Sinica 39: 176–185.
  • Wheeler, E.A., Lee, M., and Matten, L.C. 1987. Dicotyledonous woods from the Upper Cretaceous of Southern Illinois. Botanical Journal of the Linnean Society 95: 77–100.
  • Wheeler, E.A., Lehman, T.M., and Gasson, P.E. 1994. Javelinoxylon, an Upper Cretaceous dicotyledonous tree from Big Bend National Park, Texas, with presumed malvalean affinities. American Journal of Botany 81: 703–710.
  • Yamazaki, S. and Tsunada, K. 1981. Fossil coniferous woods belonging to Protocedroxylon Gothan and Xenoxylon Gothan, obtained from the Upper Triassic Miné Group, Southwest Japan. Bulletin of Science and Engineering Research Laboratory Waseda University 97: 1–18.
  • Yamazaki, S. and Tsunada, K. 1982. Some fossil woods from the Upper Triassic Nariwa and Miné groups, the inner zone of southwest Japan. Journal of the Geological Society of Japan 88: 595–611.
  • Yamazaki, S., Tsunada, K., and Koike, N. 1980. Some fossil woods from the Upper Triassic Nariwa Group, Southwest Japan. Memoirs of the School of Sciences and Engineering 44: 91–131.
  • Zhang, W., Zheng, S.-L., and Ding, Q.-H. 2000. First discovery of a genus Scotoxylon from China. Chinese Bulletin of Botany 17: 202–205.
  • Zheng, S.L., Li, Y., Zhang, W., Li, L., Wang, Y.-D., Yang, X.J., Yi, T., Yang, J., and Fu, X.-P. 2008. Fossil Wood of China. 356 pp. China Forestry Publishing House, Beijing.
  • Ziegler, A.M., Parrish, J.M., Jiping, Y., Gyllenhaal, E.D., Rowley, D.B., Parrish, J.T., Shangyou, N., Bekker, A., and Hulver, M.L. 1993. Early Mesozoic phytogeography and climate. Philosophical Transactions of the Royal Society of London B 341: 297–305.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-57d8d576-22fa-4e04-8a5d-1926d1f59fa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.