Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

The influence of energy recovery from waste on landfill gas: A case study from Korea


Warianty tytułu

Języki publikacji



In order to conceive of an efficient way to manage a landfill, we conducted an exemplary study of the Sudokwon Landfill Site in South Korea, with particular regard to the influence of energy recovery from waste. As a result of the BMP test, biogas production of demolition waste was much lower than household waste even in the same waste type. Gas production from the residual substance of energy recovery from waste (ash), waste soil, and the sludge landfill cover material was almost zero, but the solidified sludge showed 4.1 times greater than digested sludge due to the fewer pozzolanic reactions. Lysimeter test results show that the total amount of landfill gas was reduced to about 1/27 when combustible waste is buried after the recovery of energy, but, in order to be able to completely eliminate the landfill gas collecting system in a newly managed landfill, solidified sludge should not be disposed of in the landfill site. In addition, the maximum concentration of hydrogen sulfide was 60.9×10³ ppm, when total waste was mixed and landfilled. However, the concentration of hydrogen sulfide decreased to about 1/6 and the total load largely decreased to about 0.9% when applied to landfill waste after energy recovery.

Słowa kluczowe








Opis fizyczny



  • Graduate School of Energy and Environment, Seoul National University of Science and Technology, Seoul, South Korea
  • Graduate School of Energy and Environment, Seoul National University of Science and Technology, Seoul, South Korea
  • Graduate School of Energy and Environment, Seoul National University of Science and Technology, Seoul, South Korea


  • 1. RASI S., LANTELA J., RINTALA J. Upgrading landfill gas using a high pressure water absorption process. Fuel 115, 539, 2014.
  • 2. KHAIRUDDIN N., MANAF L.A, HASSAN M.A, HALIMOON N., KARIM W.A.W.A. Biogas Harvesting from Organic Fraction of Municipal Solid Waste as a Renewable Energy Resource in Malaysia: A Review. Pol. J. Environ. Stud. 24 (4), 1483, 2015.
  • 3. VAVERKOVÁ M., ADAMCOVÁ D. Long-Term Temperature Monitoring of a Municipal Solid Waste Landfill. Pol. J. Environ. Stud. 24 (3), 1373-1374, 2015.
  • 4. MA J., ZHAO Y., WANG J., WANG L. Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge. Demolition Building Mater. 24, 79, 2010.
  • 5. XIN D., CHAI X., ZHAO W. Hybrid cement-assisted dewatering, solidification and stabilization of sewage sludge with high organic content. J. Mater. Cycles Waste Manage. 18 (1), 356, 2016.
  • 6. SUCHOWSKA-KISIELEWICZ M., JĘDRCZAK A., MYSZOGRAJ S. Kinetic constants of decomposition of the municipal solid waste prior to and after mechanical-biological processing. Field scale. Archives environ. Prot. 38 (4), 71, 2012.
  • 7. MOU Z., SCHEUTZ C., KJELDSEN P. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills. Waste Manage. 34 (11), 2254, 2014.
  • 8. DEIPSER A., STEGMANN R. The Origin and Fate of Volatile Trace Components in Household Solid Waste Landfills. Waste Manage. Res. 12, 131, 1994.
  • 9. AHMED A.T., KHALID H.A., AHMED A.A., CHEN D. lysimeter experimental study and numerical characterization of the leaching of incinerator bottom ash waste. Waste Manage. 30, 1537, 2010.
  • 10. HE J., LI F., LI Y., CUI X. Modified sewage sludge as temporary landfill cover material. Water Sci. Eng. 8 (3), 259, 2015.
  • 11. SUN F., WU S., LIU J., LI B., CHEN Y., WU W. Denitrification capacity of a landfilled refuse in response to the variations of COD/NO₃-N in the injected leachate. Bioresour. Technol. 103, 112, 2012.
  • 12. BHATTACHARYA S.K., UBEROI V., DRONAMRAJU M.M. Interaction between acetate fed sulfate reducers and methanogens. Water Res. 30 (10), 2239, 1996.
  • 13. YUCHENG C.A.O., STASZEWSKA E. Role of landfill cover in reducing methane emission. Archives environ. prot. 39 (3), 115, 2013.
  • 14. YUE D., HAN B., SUN Y., YANG T. Sulfide emissions from different areas of a household solid waste landfill in China. Waste Manage. 34, 1041, 2014.
  • 15. FILIPKOWSKA U. Effect of Recirculation Method on Quality of Landfill Leachate and Effectiveness of Biogas Production. Polish J. of Environ. Stud. 17 (2), 200, 2008.
  • 16. FILIPKOWSKA U., AGOPSOWICZ M.H. Solids Waste Gas Recovery Under Different Water. Pol. J. Environ. Stud. 13 (6), 664, 2004.
  • 17. JANIN A., COUDERT L., RICHE P., MERCIER G., COOPER P., BLAIS J.F. Application of a CCA-treated wood waste decontamination process to other. copper-based preservative-treated wood after disposal. Hazard Mater. 186, 1880, 2011.
  • 18. KRÄMER C., KOWALD T.L., TRETTIN R.H.F. Pozzolanic hardened three-phase-foams. Cement Concr. Composites 62, 45, 2015.
  • 19. LONARDO M.C.D., FRANZESE M., COSTA G., GAVASCI R., LOMBARDI F. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications. Waste Manage. 47, 195, 2016.
  • 20. TYAGI V.K., LO S.L. Sludge: A waste or renewable source for energy and resources recovery. Renew. Sustainable Energy Reviews. 25, 723, 2013.
  • 21. GEWALD D., SIOKOS K., KARELLAS S., SPLIETHOFF H. Waste heat recovery from a landfill gas-fired power plant. Renew. Sustainable Energy Reviews. 16, 1786, 2012.
  • 22. KIM K.H., CHOI Y.J., JEON E.C., YOUNG S.W. Characterization of malodorous sulfur compounds in landfill gas. Atmospheric Environ. 39 (6), 1107, 2005.
  • 23. HEANEY C.D., WING S., CAMPBELL R.L., CALDWELL D., HOPKINS B., RICHARDSON D., YEATTS K. Relation between malodor, ambient H₂S,andhealth in a community bordering a landfill. Environ. Res. 111 (6), 848, 2011.
  • 24. GLASS D.C. A review of the health effects of hydrogen sulphide exposure. Annals Occup. Hyg. 34, 323, 1990.
  • 25. LEGATOR M.S., SINGLETON C.R., MORRIS D.L., PHILIPS D.L. Health effects from chronic low-level exposure to hydrogen sulfide. Archives Environ. Health 56 (2), 123, 2001.
  • 26. SUN W., SUN M., BARLAZ M.A. Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors. Waste Manage. 53, 82, 2016.
  • 27. DE SMUL A., GOETHALS L., VERSTRAETE W. Effect of COD to sulphate ratio and temperature in expanded-granular-sludge-blanket reactors for sulphate reduction. Process Biochem. 34, 408, 1999.
  • 28. BHARATI B., PRANAB K.G. Sulfate bioreduction and elemental sulfur formation in a packed bed reactor. J. Environ. Chem. Eng. 2(3), 1287, 2014.
  • 29. HAO J.O., JIN M.C., LI H. Sulfate-reducing bacteria. Crit. Review Environ. Sci. Technol. 26, 155, 1996.
  • 30. PLAZA C., XU Q., TOWNSEND T., BITTON G., BOOTH M. Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from demolition and demolition (C&D) debris landfills. J. Environ. Manage. 84 (3), 314, 2007.
  • 31. CHUN S.K. The influence of air inflow on CH4 composition ratio in landfill gas. J Mater Cycles Waste Manage. 16 (1), 172, 2014.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.