PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 4 |

Tytuł artykułu

Ecophysiology parameters of four Brazilian Atlantic Forest species under shade and drought stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Brazilian Atlantic Forest has experienced a reduction in its original area since the discovery of Brazil. Over the last 30 years, studies and techniques for forest recovery have advanced. Establishing a self-sustainable reforested area with adequate biodiversity is the main parameter for any reforestation program. Thus, knowledge of the ecophysiological behavior of the species to be used is crucial. Our hypothesis is that certain tools are efficient in determining the ecophysiological characterization of native species within different functional groups. Filling group plants show fast growth, intense gas exchange, present mechanisms of water deficit tolerance and show high efficiency in radiation capture, so they are first planted in a reforestation area. While plants pertaining to the diversity group do not exhibit these characteristics, thus are plants after the establishment of the first group of species. To test this hypothesis, two experiments were installed using young plants of four species native to the Atlantic Forest, grown in 9-L pots. Leaf water potential, gas exchange, chlorophyll fluorescence and certain biochemical parameters of leaf metabolism were evaluated. In the first experiment, plants were maintained under two forms of light availability for 15 days, full light (control) and shaded (shade). The species Inga sp. and Brosimum guianensis presented the most contrasting responses on day 15, principally in the variables leaf water potential, gas exchange, leaf soluble sugar content, F'v=F'm and Fv/Fm. In the second experiment, plants were divided into two groups: a well-hydrated group (control) and one that underwent irrigation suspension for 7 days (drought); measurements were performed on day 8 of drought. Again, Inga sp. and Brosimum guianensis plants showed responses characterizing them as pertaining to distinct functional groups for the experimental parameters previously described. Thus, Inga sp. was classified as pertaining to the filling group and B. guianensis to the diversity group. The performance of the species Cinnamomum zeylancium and Tapirira guianensis under the conditions studied suggests that these are intermediate species with potential for use as filling group species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

4

Opis fizyczny

p.729-737,fig.,ref.

Twórcy

autor
  • Laborato´rio de Ecofisiologia Vegetal, Departamento de Botaˆnica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
  • Laborato´rio de Ecofisiologia Vegetal, Departamento de Botaˆnica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
autor
  • Laborato´rio de Fisiologia Vegetal, Centro de Cieˆncias Agra´rias, Universidade Federal de Alagoas, Maceio´ , AL 57100-000, Brazil
autor
  • Laborato´rio de Ecofisiologia Vegetal, Departamento de Botaˆnica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil

Bibliografia

  • Alves-Costa CP, Lôbo D, Leão T, Brancalion PHS, Nave AG, Gandolfi S, Santos AMM, Rodrigues RR, Tabarelli M (2008) Implementando reflorestamentos com alta diversidade na zona da mata nordestina: Guia prático. Recife, 220 pp
  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. doi:10.1093/jxb/erh196
  • Björkman O, Powles SB (1984) Inhibition of photosynthetic reaction under water stress: interaction with light level. Planta 161:490–504. doi:10.1007/BF00407081
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Brooks T, Balmford A (1996) Atlantic forest extinctions. Nature 380:115. doi:10.1038/380115a0
  • Brooks T, Rylands AB (2003) Species on the brink: critically endangered terrestrial vertebrates. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats and outlook. Center for Applied Biodiversity Science and Island Press, Washington, DC, pp 360–371
  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environment. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman & Hall, London, pp 5–55
  • CI-Brasil (Conservation International do Brasil) (1993) Fundação Biodiversitas & Sociedade Nordestina de Ecologia. In: Workshop ‘‘Áreas prioritárias para a conservação da Mata Atlântica do Nordeste’’, Pernambuco 1993. Mapa de remanescentes, Belo Horizonte
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 29:350–356. doi:10.1021/ac60111a017
  • Ennajeh M, Vadel AM, Khemira H (2009) Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit. Acta Physiol Plant 31:711–721. doi:10.1007/s11738-009-0283-6
  • Gulías J, Cifre J, Jonasson S, Medrano H, Flexas J (2009) Seasonal and inter-annual variations of gas exchange in thirteen woody species along a climatic gradient in the Mediterranean island of Mallorca. Flora 204:169–181. doi:10.1016/j.flora.2008.01.011
  • Intergovernmental Panel on Climate Change (2007) http://www.ipcc.ch. Accessed 25 October 2007
  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego
  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591
  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:845–853. doi:10.1038/35002501
  • Ogaya R, Peñuelas J (2003) Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holy Oak forest. Flora 198:132–141. doi:10.1078/0367-2530-00085
  • Osmond CB, Winter K, Powles SB (1980) Adaptive significance of carbon dioxide cycling during photosynthesis in waterstressed plants. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 139–154
  • Parker VT (1997) The scale of successional models and restoration objectives. Rest Ecol 5:301–306. doi:10.1046/j.1526-100X.1997.00031.x
  • Pimentel C, Laffray D, Louguet P (1999) Intrinsic water use efficiency at the pollination stage as a parameter for drought tolerance selection in Phaseolus vulgaris. Physiol Plant 106:184–198. doi:10.1034/j.1399-3054.1999.106206.x
  • Porto K, Cortez JA, Tabarelli M (2006) Diversidade biológica no Centro de Endemismo Pernambuco: sítios prioritários para a conservação. Coleção Biodiversidade. Ministério do Meio Ambiente, Brasília
  • Ribeiro RV, Santos MG, Souza GM, Ribeiro HL, Oliveira RF (2004) Gas exchange of two species from different successional status under greenhouse condition. Sci Forestalis 65:30–39
  • Rodrigues ASL, Akçakaya HR, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Chanson JS, Fishpool LDC, Fonseca GAB, Gaston KJ, Hoffmann M, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54:1092–1100. doi:10.1641/0006-3568(2004)054[1092:GGAPRF]2.0.CO;2
  • Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142:1242–1251. doi: 10.1016/j.biocon.2008.12.008
  • Santos MG, Pimentel C (2009) Daily balance of leaf sugars and amino acids as indicators of common bean (Phaseolus vulgaris L.) metabolic response and drought intensity. Physiol Mol Biol Plants 15:23–30. doi:10.1007/s12298-009-0002-1
  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies, vol 100. Springer, Berlin, pp 49–70
  • Silva JMC, Casteleti CHM (2003) Status of the biodiversity of the Atlantic Forest of Brazil. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats and outlook. CABS & Island Press, Washington, DC, pp 43–59
  • Silva JMC, Tabarelli M (2000) Tree species impoverishment and the future flora of the Atlantic Forest of northeast Brazil. Nature 404:72–74. doi:10.1038/35003563
  • Souza GM, Ribeiro RV, Santos MG, Ribeiro HL, Oliveira RF (2004) Functional groups of Forest succession as dissipative structures: an applied study. Braz J Biol 64:707–718. doi:10.1590/S1519-69842004000400020
  • Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. J Veg Sci 75:81–86
  • Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn Res 25:147–150. doi:10.1007/BF00033156
  • Vincent G (2001) Leaf photosynthetic capacity and nitrogen concent adjustment to canopy openness in tropical forest tree seedling. J Trop Ecol 17:495–509. doi:10.1017/S0266467401001377
  • Yemm EW, Cocking EC (1955) The determination of amino-acids with ninhidrin. Analyst 80:209–213
  • Yordanov I, Tsonev T, Goltsev V, Kruleva L, Velikova V (1997) Interactive effect of water deficit and high temperature on photosynthesis of sunflower and maize plants. 1. Changes in parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. Photosynthetica 33:381–402

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5739bc8f-c672-46ce-9059-92506a3f1dda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.