PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 31 | 2 |
Tytuł artykułu

Urban compression patterns: Fractals and non-Euclidean geometries - inventory and prospect

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wydawca
-
Rocznik
Tom
31
Numer
2
Opis fizyczny
p.21-28,fig.,ref.
Twórcy
  • School of Economic, Political and Policy Sciences, University of Texas at Dallas, 800 W.Campbell Road, Richardson, TX 75080-3021, USA
Bibliografia
  • Arlinghaus S., 1985. Fractals take a central place. Geografiska Annaler, Journal of the Stockholm School of Economics, 67B: 83-88.
  • Arlinghaus S., 2010. Fractals take a non-Euclidean place. Solstice: An Electronic Journal of Geography and Mathematics, XXI, 1. Institute of Mathematical Geography, Ann Arbor, http://www.imagenet.org/.
  • Arlinghaus S. & Arlinghaus W., 1989. The fractal theory of central place hierarchies: A Diophantine analysis of fractal generators for arbitrary Loschian numbers. Geographical Analysis: An International Journal of Theoretical Geography, 21(2): 103-121.
  • Arlinghaus S., Arlinghaus W. & Harary F., 1993. Sum graphs and geographic information. Solstice: An Electronic Journal of Geography and Mathematics, IV, 1. Institute of Mathematical Geography, Ann Arbor, http://www-personal. umich.edu/ ~copyrght/ image/solstice/sols193.html. Arlinghaus S. & Batty M., 2006. Zipf's hyperboloid? Solstice: An Electronic Journal of Geography and Mathematics, XVII, 1. Institute of Mathematical Geography, Ann Arbor, http://www.imagenet.org/.
  • Arlinghaus S. & Batty M., 2010. Zipf's hyperboloid revisited: Compression and navigation - canonical form. Solstice: An Electronic Journal of Geography and Mathematics, XXI, 1. Institute of Mathematical Geography, Ann Arbor, http://www. imagenet.org/.
  • Arlinghaus S. & Nystuen J., 1990. Geometry of boundary exchanges: Compression patterns for boundary dwellers. Geographical Review, 80(1): 21-31.
  • Arlinghaus S. & Nystuen J., 1991. Street geometry and flows. Geographical Review, 81(2): 206-214.
  • Batty M. homepage: http://www.casa.ucl.ac.uk/people/ MikesPage.htm.
  • Batty M. & Longley P., references listing: http://www.casa. ucl.ac.uk/people/MikesPage. htm.
  • Benguigui L. & Daoud M., 1991 Is the suburban railway system a fractal? Geographical Analysis, 23: 362-368.
  • Elert G., 1995-2007. About dimension. The chaos hypertextbook, http://hypertextbook. com/chaos/33.shtml.
  • Griffith D., Vojnovic I. & Messina J., 2010. Distances in residential space: Implications from estimated metric functions for minimum path distances. Paper to be submitted to Journal of Transport Geography.
  • Hausdorff & Besicovitch, historical reference: http:// en.wikipedia.org/wiki/Hausdorff dimension.
  • Mandelbrot B., 1982. The fractal geometry of nature. W.H. Freeman, New York.
  • Ord J., 1975. Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70: 120-126.
  • Rodin V. & Rodina E., 2000. The fractal dimension of Tokyo's streets. Fractals, 8: 413-418.
  • Shen G., 1997. A fractal dimension analysis of urban transportation networks. Geographical & Environmental Modelling, 1: 221-236.
  • Wikipedia, Fibonacci coding: http://en.wikipedia.org/wiki/ Fibonacci_coding. Last accessed, August 29, 2010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-57375ff0-73fd-487e-9dac-3b8dd81f4a93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.