EN
The link between the acute toxicity of heavy metals on algae and the bioadsorption capacity of heavy metals by algae has seldom been reported. In the present study, an acute toxicity experiment was carried out to assess the toxic effects of Pb, Cu, and Cd for Chlorella sorokiniana, and the 96 h IC₅₀ values were 0.249 mg/L, 0.485 mg/L, 46.108 mg/L, and 21.00 mg/L for Cu, Cd, Pb (total), and Pb (free ion), respectively, which implied that Chlorella sorokiniana showed high tolerance to Pb compared to Cu and Cd. Pb distribution analysis indicated that 73.40% to 98.15% of free Pb ions were accumulated on the algae cell wall to avoid further intracellular accumulation, resulting in irreversible metabolic disorders. Then the adsorption capacity of Chlorella was explored. It could be found that the Langmuir model (the R² were 0.988 and 0.962 for living and lifelss cells, respectively) was fit to explain the adsorption equilibrium data and the qₑ calculated by this model were 1.54 and 2.97 mg /10¹⁰ cells for living and lifeless cells, respectively, which was consistent with the experimental result. In the competitive adsorption, Chlorella exhibited a greater affinity for Pb with the higher removal rate compared to Cu and Ni. Therefore, the renewable Chlorella sorokiniana and its dramatic resistance to Pb may serve as a potential biosorbent for Pb in the future.