PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 5 |

Tytuł artykułu

Exogenously applied polyamines increase drought tolerance of rice by improving leaf water ststus, photosynthesis and membrane properties

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Drought stress hampers rice performance principally by disrupting the plant–water relations and structure of biological membranes. This study appraised the role of polyamines (PAs) in improving drought tolerance in fine grain aromatic rice (Oryza sativa L.). Three PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)] were used each at 10 µM as seed priming (by soaking seeds in solution) and foliar spray. Primed and non-primed seeds were sown in plastic pots with normal irrigation in a phytotron. At four-leaf stage, plants were subjected to drought stress by bringing the soil moisture down to 50% of field capacity by halting water supply. For foliar application, 10 µM solutions each of Put, Spd and Spm were sprayed at five-leaf stage. Results revealed that drought stress severely reduced the rice fresh and dry weights, while PAs application improved net photosynthesis, water use efficiency, leaf water status, production of free proline, anthocyanins and soluble phenolics and improved membrane properties. PAs improved drought tolerance in terms of dry matter yield and net photosynthesis was associated with the maintenance of leaf water status and improved water use efficiency. Among the antioxidants, catalase activity was negatively related to H₂O₂ and membrane permeability, which indicated alleviation of oxidative damage on cellular membranes by PAs application. Foliar application was more effective than the seed priming, and among the PAs, Spm was the most effective in improving drought tolerance.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

5

Opis fizyczny

p.937-945,fig.,ref.

Twórcy

autor
  • Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
autor
  • Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
autor
  • Department of Crop Science and Biotechnology, Dankook University, Chungnam 330-714, Korea

Bibliografia

  • Abdul Jaleel C, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105
  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876. doi:10.1007/s10529-006-9179-3
  • Ali RM (2000) Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci 152:173–179. doi:10.1016/S0168-9452(99)00227-7
  • Apel K, Hirt H (2004) Reactive oxygen species metabolism, oxidative stress, a signaling transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Basra RK, Basra AS, Malik CP, Grover IS (1997) Are polyamines involved in the heat-shock protection of mung bean seedlings? Bot Bull Acad Sin 38:165–169
  • Bates LS, Waldern RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi: 10.1007/BF00018060
  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344. doi:10.1007/s004250050567
  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effects of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206. doi:10.1007/BF00195077
  • Bilger W, Johnsen T, Schreiber U (2001) UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot 52:2007–2014. doi:10.1093/ jexbot/52.363.2007
  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47
  • Breusegem FV, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414. doi:10.1016/S0168-9452(01)00452-6
  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht
  • Davies PJ (2004) The plant hormones: their nature, occurrence and function. In: Davies PJ (ed) Plant hormones, biosynthesis, signal transduction, action. Kluwer, Dordrecht
  • Drolet G, Dumbroff EB, Legge RL, Thkopson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371. doi:10.1016/S0031-9422(00)85482-5
  • Farooq M, Basra SMA, Hussain M, Rehman H, Saleem BA (2007) Incorporation of polyamines in the priming media enhances the germination and early seedling growth in hybrid sunflower (Helianthus annuus L.). Int J Agric Biol 9:868–872
  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333. doi:10.1111/j.1439-037X.2008.00323.x
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009a) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi:10.1051/agro:2008021
  • Farooq M, Kobayashi N, Wahid A, Ito O, Basra SMA (2009b) Strategies for producing more rice with less water. Adv Agron 101:351–387
  • Feng Z, Guo A, Feng Z (2003) Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regul 39:277–283. doi:10.1023/A:1022881628305
  • Foyer CH, Fletcher JM (2001) Plant antioxidants: colour me healthy. Biologist 48:115–120
  • Galston AW, Sawhney RK, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207
  • Garcia-Plazaola JI, Becerril JM (2000) Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L) seedlings from different provenances. Trees (Berl) 14:485–490. doi:10.1007/s004680000068
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68) 90654-1
  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008a) Exogenous application of glycinebetaine and salicylic acid improves drought tolerance in sunflower. J Agron Crop Sci 194:193–199. doi:10.1111/j.1439-037X.2008.00305.x
  • Hussain M, Farooq M, Jabran K, Rehman H, Akram M (2008b) Exogenous glycinebetaine application improves yield under water limited conditions in hybrid sunflower. Arch Agron Soil Sci 54:557–567. doi:10.1080/03650340802262086
  • Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Agric Food Chem 33:213–217. doi:10.1021/jf00062a013
  • Kumar SG, Mattareddy A, Sudhakar C (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci 165:1245–1251. doi:10.1016/S0168-9452(03)00332-7
  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381. doi:10.1007/s00425-008-0772-7
  • Lee TM (1997) Polyamine regulation of growth and chilling tolerance of rice (Oryza sativa L.) roots cultured in vitro. Plant Sci 122:111–117. doi:10.1016/S0168-9452(96)04542-6
  • Liu K, Fu HH, Bei QX, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325. doi:10.1104/pp. 124.3.1315
  • Liu J-H, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126
  • Luck H (1974) Catalases. In: Bergmeyer HU (ed) Methods of enzymatic analysis 2. Academic Press, New York
  • McCord JM, Fridovitch I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (Hemocuprein). J Biol Chem 244:6049–6055
  • Munne-Bosch S, Penuelas J (2003) Photo and antioxidative protection, and a role for salicylic acids during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766. doi:10.1007/s00425-003-1037-0
  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140
  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365. doi:10.1111/j.1439-037X.2004. 00106.x
  • Nayyar H, Kaur S, Kumar SS, Singh KJ, Dhir KK (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot Bull Acad Sin 46:333–338
  • Olga B, Eija V, Kurt VF (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118
  • Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile. Int J Agric Biol 10:451–454
  • Richards FJ, Coleman RG (1952) Determination of creatinine. Nature 170:460. doi:10.1038/170460a0
  • Roberts DR, Dumbroff EB, Thompson JE (1986) Exogenous polyamines alter membrane fluidity in bean leaves—a basis for their potential misinterpretation of their true physiological role. Planta 167:395–401. doi:10.1007/BF00391345
  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135. doi:10.1007/ s10725-005-5482-6
  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219. doi:10.1016/S0958-1669(98)80118-3
  • Stark D, Wray V (1989) Anthocyanins. In: Harborne JB (ed) Methods in plant biology, vol I. Plant phenolics. Academic Press/Harcourt Brace Jovanovich, London, pp 325–356
  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852. doi:10.1111/j.1399-3054.1997.tb01072.x
  • Teranishi Y, Tanaka A, Osumi M, Fukui S (1974) Catalase activity of hydrocarbon utilising candida yeast. Agric Biol Chem 38:1213–1216
  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis and accumulation of nitric acid (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354. doi:10.1093/pcp/pci252
  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228. doi: 10.1007/s10265-006-0040-5
  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. doi:10.1016/j.envexpbot.2007.05.011
  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555. doi:10.1093/jxb/erm032
  • Yokota A, Kawasaki S, Iwano M, Nakamura C, Miyake C, Akashi K (2002) Citrulline and DRIP-1 protein (ArgE Homologue) in drought tolerance of wild watermelon. Ann Bot (Lond) 89:825–832. doi:10.1093/aob/mcf074
  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant. 53.091401.143329

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-56fc05b9-7f40-432b-85dc-cd0b9bb14384
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.