PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 1 |

Tytuł artykułu

Activities of photosystem II and antioxidant enzymes in chickpea ( Cicer arietinum L.) cultiovars exposed to chilling temperatures

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was carried out to determine the effect of chilling on both cold-acclimated and non-acclimated chickpea (Cicer arietinum L.) cultivars (Gökçe and Canıtez 87). Chickpea seedlings grown in soil culture for 12 days were subjected to chilling temperatures (2 and 4°C for 12 days) after maintaining in cold-acclimation (10°C, 7 days) or non-acclimation (25°C, 7 days) periods. The lowest values of growth parameters were obtained with cold-acclimated plants, whereas non-acclimated plants exhibited the lowest water content values, especially at 2°C. There was no effect of cold-acclimation period on chlorophyll fluorescence parameters. Plants subjected to chilling temperatures after cold-acclimation were more tolerant with respect to chlorophyll fluorescence parameters, and Gökçe had better photosystem II (PSII) photochemical activity. In the chilling treatments, total chlorophyll (a + b) content reduced, especially at 2°C, while anthocyanin and flavonoid contents increased to a greater extent in Gökçe and carotenoid content of the cultivars did not change. Malondialdehyde (MDA) content was higher for Canıtez 87, mostly at 2°C, while proline accumulation was greater for Gökçe. The cold-acclimation period led to a remarkable increase in antioxidant enzyme activities of both cultivars. The superoxide dismutase (SOD) activity was much higher in Gökçe for both chilling temperatures and the ascorbate peroxidase (APX) activity increased only in the cold-acclimated 4C treatments. Similarly, with APX activity, the glutathione reductase (GR) and peroxidase (POD) activities of cultivars were higher in cold-acclimated plants at both the chilling temperatures, mostly in Gökçe. The results of this study indicate that cold-acclimation increased the cultivars ability to withstand the chilling temperatures. The lower MDA content and higher antioxidant and photochemical activities in Gökçe indicated an enhanced chilling tolerance capacity of this cultivar to protect the plant from oxidative damage.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

1

Opis fizyczny

p.67-78,fig.,ref.

Twórcy

autor
  • Department of Biology, Faculty of Science, Hacettepe University, Beytepe, 06800 Ankara, Turkey
autor
  • Department of Biology, Faculty of Science, Hacettepe University, Beytepe, 06800 Ankara, Turkey

Bibliografia

  • Alia, Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200
  • Aroca R, Vernieri P, Irigoyen JJ, Sánchez-Díaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679
  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006
  • Baker NR, Rosenquist E (2004) Applications of cholorophyll fluoresences can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. doi: 10.1093/jxb/erh196
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water–stress studies. Plant Soil 39:205–207. doi: 10.1007/BF00018060
  • Bergmeyer HU (1974) Methods of enzymatic analysis, vol II, Section C: Methods for determination of enzyme activity, 2nd edn, pp 685–690
  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566
  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynth Res 25:173–185. doi:10.1007/BF00033159
  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116. doi:10.1146/annurev.pp.43.060192.000503
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Brown J, Khodr H, Hider RC, Rice-Evans CA (1998) Structural dependence of flavonoid interactions with Cu (II) ions: implications for their antioxidant properties. Biochem J 330:1173–1178
  • Chołuj D, Kalaji HM, Niemyska B (1997) Analysis of the gas exchange components in chilled tomato plants. Photosynthetica 34:583–589. doi:10.1023/A:1006825915953
  • Croser JS, Clarke HJ, Siddique KHM, Khan TN (2003) Low temperature stress: Implicants for chickpea (Cicer arietinum L) improvement. Critic Rev Pl Sci 22:185–219. doi:10.1080/0735268031878327
  • Demmig-Adams B, Adams WW III, Logan BA, Verhoeven AS (1995) Xanthophyll cycle-dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress. Aust J Plant Physiol 22:249–260. doi:10.1071/PP9950249
  • FAOSTAT (2007) Food and Agriculture Organization of the United Nations (FAO) statistical databases. Rome, Italy. http://www.fao.org
  • Farrant JM (2000) A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Eco 151:29–39. doi:10.1023/A:1026534305831
  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plantarum 92:696–717. doi:10.1111/j.1399-3054.1994.tb03042
  • Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures. Plant Physiol Biochem 40:659–668. doi:10.1016/S0981-9428(02)01425-0
  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92
  • Georgieva K, Lichtenthaler HK (1999) Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. J Plant Physiol 155:416–423
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Hendrickson L, Förster B, Pogson BJ, Chow WS (2005) A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of Photosystem II. Photosynth Res 84:43–49. doi:10.1007/s11120-004-6430-4
  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–1113
  • Hogewoning SW, Harbinson J (2007) Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. J Exp Bot 58:453–463. doi:10.1093/jxb/erl219
  • Holá D, Kočová M, Rothová O, Wilhelmová N, Benešová M (2007) Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes. J Plant Physiol 164:868–877. doi: 10.1016/j.jplph.2006.04.016
  • Hull MR, Long SP, Jahnke LS (1997) Instantaneous and developmental effects of low temperature on the catalytic properties of antioxidant enzymes in two Zea species. Aust J Plant Physiol 24:337–343
  • Ivanov AG, Sane P, Hurry V, Kro´l M, Sveshnikov D, Huner NPA, Öquist G (2003) Low-temperature modulation of redox properties of the acceptor side of photosystem II: photoprotection through reaction centre quenching of excess energy. Physiol Plantarum 119:376–383. doi:10.1034/j.1399-3054.2003.00225
  • Jahnke LS, Hull MR, Long SP (1991) Chilling stress and oxygen metabolising enzymes in Zea mays and Zea diploperennis. Plant Cell Environ 14:97–104. doi:10.1111/j.1365-3040.1991.tb01375
  • Johnston JW, Harding K, Benson EE (2007) Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci 172:524–534. doi:10.1016/j.plantsci.2006.11.001
  • Kang HM, Saltveit ME (2001) Activity of enzymatic antioxidant defence systems in chilled and heat shocked cucumber seedling radicles. Physiol Plantarum 113:548–556. doi:10.1034/j.1399-3054.2001.1130414
  • Kingston-Smith AH, Harbinson J, Foyer CH (1999) Acclimation of photosynthesis, H₂O₂ content and antioxidants in maize (Zea mays) grown at sub-optimal temperatures. Plant Cell Environ 22:1071–1083. doi:10.1046/j.1365-3040.1999.00469
  • Kofidis G, Bosabalidis AM, Moustakas M (2007) Combined effects of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae). Environ Exp Bot 60:69–76. doi:10.1016/ j.envexpbot.2006.06.007
  • Kościelniak J, Janowiak F, Kurczych Z (2005) Increase in photosynthesis of maize hybrids (Zea mays L.) at suboptimal temperature (15°C) by selection of parental lines on the basis of chlorophyll a fluorescence measurements. Photosynthetica 43:125–134. doi: 10.1007/s11099-005-5134-0
  • Kuk YI, Sin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung S, Guh JO (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 43:2109–2117
  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85. doi:10.1016/S0168-9452(00)00326-5
  • Liau YJ, Wen L, Shaw JF, Lin CT (2007) A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: expression in yeast and enzyme properties. J Biotechnol 131:84–91. doi:10.1016/j.jbiotec.2007.05.021
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382
  • Lin KH, Hwang WC, Lo HF (2007) Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. Photosynthetica 45:628–632. doi:10.1007/s11099-007-0108-z
  • Lukatkin AS (2002) Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensivite plants: 2. the activity of antioxidant enzymes during plant chilling. Russ J Plant Physiol 49:782–788. doi:10.1023/A: 1022985500733
  • Mancinelli AL, Yang CPH, Lindquist P, Anderson OR, Rabino I (1975) Photocontrol of anthocyanin synthesis III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiol 55:251–257
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668
  • Mirecki RM, Teramura AH (1984) Effects of ultraviolet-B irradiance on soybean V, the dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol 74:475–480
  • Mohanty S, Grimm B, Tripathy BC (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692–699. doi:10.1007/s00425-006-0248-6
  • Morsy MR, Jouve L, Hausman J-F, Hoffmann L, Stewart JMcD (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167. doi:10.1016/j.jplph.2005.12.004
  • Nayyar H, Bains TS, Kumar S (2005a) Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ Exp Bot 54:275–285
  • Nayyar H, Bains TS, Kumar S, Kaur G (2005b) Chilling effects during seed filling on accumulation of seed reserves and yield of chickpea. J Sci Food Agric 85:1925–1930. doi:10.1002/jsfa.2198
  • Pardossi A, Vernieri P, Tognoni F (1992) Involvement of absisic acid in regulating plant water status in Phaseolus vulgaris during chilling. Plant Physiol 100:1243–1250
  • Posmyk MM, Bailly C, Szafrańska K, Janas KM, Corbineau F (2005) Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J Plant Physiol 162:403–412. doi:10.1016/j.jplph.2004.08.004
  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulator role for hydrogen peroxide. Plant Cell 6:65–74
  • Rao VM, Hale BA, Omrod DP (1995) Amelioration of ozone induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiol 109:421–432
  • Rymen B, Fiorani F, Kartal F, Vandepoele K, Inzé D, Beemster GTS (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143:1429–1438. doi:10.1104/pp.106.093948
  • Sokal RR, Rohlf FJ (1997) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Company Publisher, New York, pp 415–417
  • Srinivasan A, Saxena NP, Johansen C (1999) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L): genetic variation in gamete development and function. Field Crop Res 60:209–222. doi:10.1016/S0378-4290(98)00126-9
  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361. doi:10.1046/j.1469-8137. 2002.00482
  • Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR (2006) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ Exp Bot 56:147–157. doi:10.1016/j.envexpbot.2005.01.011
  • Tambussi EA, Bartoli CG, Guiamet JJ, Beltrano J, Araus JL (2004) Oxidative stress and photodamage at low temperatures in soybean (Glycine max L. Merr.) leaves. Plant Sci 167:19–26. doi:10.1016/j.plantsci.2004.02.018
  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599. doi:10.1146/annurev.arplant.50.1.571
  • Turan Ö, Ekmekçi Y (2008) Chiling stress-induced changes of photochemical activity in the leaves of two chickpea cultivars. In: Response of plants to environmental stresses conference. Elena, Bulgaria. 12–18 May
  • Wang SY, Jiao HJ, Faust M (1991) Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiol Plantarum 82:231–236. doi:10.1111/j.1399-3054.1991.tb00086
  • Weimberg R (1987) Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol Plantarum 70:381–388. doi:10.1111/j.1399-3054.1987. tb02832
  • Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperatureinduced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566–1578
  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of longterm chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plantarum 132:467–478. doi:10.1111/j.1399-3054.2007.01036
  • Yang SJ, Hosokawa M, Mizuta Y, Yun JG, Mano J, Yazawa S (2001) Antioxidant capacity is correlated with susceptibility to leaf spot caused by a rapid temperature drop in Saintpaulia (African violet). Sci Hort 88:59–69. doi:10.1016/S0304-4238(00)00235-1
  • Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I (1998) Study on the inhibitory effect of tannins and flavonoids against the 1, 1-diphenyl-2-picrylhydrazyl radical. Biochem Pharmacol 56:213–222. doi:10.1016/S0006-2952(98)00128-2
  • Zhou Y, Huang L, Zhang Y, Shi K, Yu J, Nogués S (2007) Chillinduced decrease in capacity of RuBP carboxylation and associated H₂O₂ accumulation in cucmber leaves are alleviated by grafting onto figleaf gourd. Ann Bot-London 100:839–848. doi:10.1093/aob/mcm181

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-56b39b4c-8c25-4436-8552-f1754a4fd00d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.