Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 68 |
Tytuł artykułu

Growth responses of Picea abies to climate in the central part of the Ceskomoravska Upland (Czech Republic)

Treść / Zawartość
Warianty tytułu
Języki publikacji
The aims of the study were to determine the effect of temperatures and precipitation on the ring width and to compare the results with the results of previous studies conducted in other mountain ranges of the Czech Republic. The research was performed in the central part of the Ceskomoravská Upland in the vicinity of Herálec municipality in selected 70- up to 110-year-old spruce stands at altitudes from 680ma.s.l. to 779 m a.s.l. Measuring of tree-ring widths and synchronization of individual ring series were conducted in PAST4. The age trend was removed by ARSTAN and climatic effects were modelled in DendroClim2002. The correlation of tree-ring width with monthly precipitation is positive and statistically significant for July of the previous year and for the entire summer period from June to September of the current year. The correlation of tree-ring width with mean monthly temperatures is negative and statistically significant for July and September and positive and statistically significant for October of the previous year. Negative correlation was also found for temperatures of the entire summer period from June to September of the previous year. The regional tree-ring chronology mainly shows two periods of highly reduced increment: from 1992 to 1996 and from 2003 to the end of the analysed period. The results thus confirm the hypothesis that the tree-ring width is in positive correlation with summer precipitation and negative correlation with summer temperatures. Also the results of the habitual diagnostics have shown a relatively low degree of crown transformation which indicates a weak or short-term stress load.
Opis fizyczny
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
  • Aakala T., Kuuluvainen T. 2011. Summer droughts depress radial growth of Picea abies in pristine taiga of the Arkhangelsk province, northwestern Russia. Dendrochronologia 29: 67–75.
  • Affolter P., Büntgen U., Esper J., Rigling A., Weber P., Luterbacher J., Frank D. 2010. Inner Alpine conifer response to 20th century drought swings. European Journal of Forest Research 129: 289–298.
  • Andreassen K., Solberg S., Tveito O.E., Lystad S.L. 2006. Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. Forest Ecology andManagement 222: 211–221.
  • Biondi F., Waikul K. 2004. DendroClim2002: AC++ program for statistical calibration of climate signals in tree ring chronologies. Computers and Geosciences 30: 303–311.
  • Bouriaud O., Popa I. 2009. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 23: 95–106.
  • Büntgen U., Frank D.C., Kaczka R.J., Verstege A., Zwijacz-Kozina T., Esper J. 2007. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, PolandandSlovakia. Tree Physiology 27: 689–702.
  • Cook E.R., Peters K. 1981. The smoothing spline: a new approach to standardizing forest interior tree–ring width series for dendroclimatic studies. Tree Ring Bulletin 41: 45–53.
  • Cook E.R., Kairiukstis L.A. 1990. Methods of Dendrochronology – Applications in the Environmental Sciences. Kluwer Academic Publisher and International Institute for AppliedSystems Analysis, Dordrecht, Boston, London, pp. 394.
  • Cudlín P., Novotný R., Moravec I., Chmelíková E. 2001. Retrospective evaluation of the response of montane forest ecosystems to multiple stress. Ekológia 20: 108–124.
  • Cejková A., Kolár T. 2009. Extreme Radial Growth Reaction of Norway Spruce along an Altitudinal Gradient in the Šumava Mountains. Geochronometria 33: 41–47.
  • Cermák P. 2007. Defoliace a radiální rùst jako ukazatelé vitality smrku ztepilého. Lesnická práce 86: 14–15.
  • Desplanque C., RollandC., Schweingruber F.H. 1999. Influence of species andabiotic factors on extreme tree ring modulation: Picea abies and Abies alba in Tarentaise andMaurienne (French Alps). Trees 13: 218–227.
  • Feliksik E. 1993. Wpływ klimatu na wielkość przyrostów radialnych lasotwórczych gatunków, występujących na terenie leśnictwa Bukowiec. Acta Agraria et Silvestria, Series Silvestris 31: 39–46.
  • Feliksik E., Wilczyński S., Wałecka M. 1994. Klimatyczne uwarunkowania przyrostów kambialnych świerka pospolitego (Picea abies (L.) Karst.) w leśnictwe Pierściec. Acta Agraria et Silvestria. Series Silvestris 32: 53–59.
  • Frank D., Esper J. 2005. Characterization andclimate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22: 107–121.
  • Fritts H.C., Mosimann J.E., Bottorff C.P. 1969. A Revised Computer Program for Standardizing Tree – Ring Series. Tree Ring Bulletin 29: 15–20.
  • Fritts H.C. 1976. Tree ring andclimate. Academic Press. London, New York, San Francisco, pp. 567.
  • Grabarová S., Martinková M. 2000. Changes of Norway spruce (Picea abies /L./ Karst.) growth characteristics under the impact of drought. Ekológia (Bratislava) 19, Supplement 1/2000: 81–103.
  • Grabarová S., Martinková M. 2001. Changes in mineral nutrition of Norway spruce (Picea abies /L./ Karst.) under the impact of drought. Ekológia (Bratislava) 20, Supplement 1/2001: 46–60.
  • Grissino-Mayer H.D., Holmes R., Fritts H.C. 1992. International tree–ring data bank program library. Version 1.1. Laboratory of Tree–Ring Research, University of Arizona, Tucson.
  • Holmes R.L., Adams R.K., Fritts H.C. 1986. Tree-Ring Chronologies of Western North America: California, Eastern Oregon andNorthern Great Basin with Procedures Used in the Chronology Development Work Including Users Manuals for Computer programs Cofecha andArstan. – Chronology Series VI. Laboratory of Tree – Ring Research, University of Arizona, Tuscon, AZ, USA: 50–56.
  • Kienast F., Schweingruber F.H., Bräker O.U., Schär E. 1987. Tree ring studies on conifers along ecological gradients and the potential of single-year analyses. Canadian Journal of Forest Research 17: 683–696.
  • Koprowski M., Zielski A. 2006. Dendrochronology of Norway spruce (Picea abies (L.) Karst.) from two range centres in lowlandPoland . Trees 20: 383–390.
  • Kozlowski T.T., Pallardy S.G. 1997. Growth Control in Woody Plants. Academic Press, San Diego: pp. 641.
  • Kroupová M. 2002. Dendroecological study of spruce growth in regions under long-term air pollution load. Journal of Forest Science 48: 536–548.
  • Larcher W. 1988. Fyziologická ekologie rostlin. Academia, Praha: pp. 361.
  • Lesinski J.A., Landman G. 1995. Crown and branch malformation in conifers relatedto forest decline. In Cape, J.N., Mathy, P., (eds.) Scientific basis of forest decline symptomatology. Air Pollution Research Report 15: 95–105.
  • Levitt, J. 1972. Responses of plants to environmental stresses. Academic Press, New York: pp. 698.
  • Mäkinen H., NöjdP., Mielikäinen K. 2001. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees 15: 177–185.
  • Miyamoto Y., Griesbauer H.P., Green D.S. 2010. Growth responses of tree coexisting conifer species to climate Gross wide geographic and climate ranges in Yukon andBritish Columbia. Forest Ecology and Management 259: 514–523.
  • MZE CR, VÚLHM 2004. Monitoring stavu lesa v Ceské republice 1984–2003. MZe CR, VÚLHM, Praha: pp. 432.
  • Pichler P., Oberhuber W. 2007. Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. Forest Ecology and Management 242: 688–699.
  • Rybnícek M., Cermák P., Kolár T., Pøemyslovská E., ŽidT. 2009. Influence of temperatures andpre - cipitation on radial increment of Orlické hory Mts. spruce stands at altitudes over 800 m a.s.l. Journal of Forest Science 55: 257–263.
  • Rybnícek M., Cermák P., Kolár T., ŽidT. 2010. Radial Growth andHealth Condition of Norway Spruce (Picea abies (L.) Karst.) Stands in Relation to Climate (Silesian Beskids, Czech Republic). Geochronometria 36: 9–16.
  • Rybnícek M., Cermák P., Hadaš P., Žid T., Kolár T. 2012a. Dendrochronological Analysis and Habitual Stress Diagnostic Assessment of Norway Spruce (Picea abies) Stands in the Drahany Highlands. Wood research 57 (2), in press.
  • Rybnícek M., Cermák P., Kolár T., ŽidT. 2012b. Growth responses of Picea abies to climate in the south-east part of the Ceskomoravská vrchovina Upland(Czech Republic). Geochronometria 39: 149–157.
  • Savva Y., Oleksyn J., Reich P.B., Tjoelker M.G., Vaganov E.A., Modrzynski J. 2006. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees 20: 735–746.
  • Schweingruber F.H. 1996. Tree Rings and Environment Dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow andLand scape Research, Bern, Stuttgart, Vienna: pp. 609.
  • Spiecker H. 2002. Tree rings andforest management in Europe. Dendrochronologia 20: 191–202.
  • Šmelko Š., Wolf J. 1977. Štatistické metódy v lesníctve. Príroda, Bratislava: pp. 330.
  • Štìpánek P. 2007. ProClimDB – software for processing climatological datasets. CHMI, regional office Brno.
  • Vitas A. 2004. Tree rings of Norway spruce (Picea abies (L.) Karsten) in Lithuania as drought indicators: dendroecological approach. Polish Journal of Ecology 52: 201–210.
  • Xu Y.J., Röhrig E., Fölster H. 1997. Reaction of root systems of grandfir (Abies grandis Lindl.) and Norway spruce (Picea abies Karst.) to seasonal waterlogging. Forest Ecology andManagement 93: 9–19.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.