PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |

Tytuł artykułu

Main and trace element distribution in slag-leachate-tufa system precipitate

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Detailed chemical and mineralogical analyses were conducted to characterize slag wastes, leachate, and associated tufa precipitates at an iron slag dump near Kraków in southern Poland. The slag contained elevated content of Cr (1,800-6,500 mg/kg), V (500-1,800 mg/kg), and Zn (up to 4,500 mg/kg). The negative environmental impact posed by the wastes can be potentially caused by the formation of leachate with extremely high pH (12.5-12.9), high sulphate (720 mg/l) and K concentrations (420-520 mg/l), and elevated concentrations of fluoride (1.7-2.1 mg/l) and Al (up to 2.7 mg/l). A dominant feature of the leachate was massive precipitation of calcareous tufa forming a cascade of tufa barrier ponds at the base of the slag dump. The tufa preferentially concentrated Pb, Sr, Ba, Rb, sulfur, and phosphorus, while Fe, Zn, Mg, Mn, Cr, and V were depleted relative to the content in the slag material.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.287-292,fig.,ref.

Twórcy

  • Faculty of Earth Sciences, University of Silesia, Bedzinska 60, 41-200 Sosnowiec, Poland
autor
  • Department of Environmental Monitoring, Central Mining Institute, Gwarkow 1 square, 40-166 Katowice, Poland
autor
  • Department of Environmental Monitoring, Central Mining Institute, Gwarkow 1 square , 40-166 Katowice, Poland

Bibliografia

  • 1. U.S. GEOLOGICAL SURVEY. Mineral commodity summaries 2015: U.S. Geological Survey, 2015.
  • 2. CENTRALl STATISTICAL OFFICE. Environment 2014. Statistical Information and Elaboration. Warszawa. Central Statistical Office, 2014.
  • 3. PROCTOR D.M., FEHLING K.A., SHAY E.C., WITTENBORN J.L., GREEN J.J., AVENT C., BIGHAM R.D., CONNOLLY M., LEE B., SHEPKER T.O., ZAK M.A. Physical and Chemical Characteristics of Blast Furnace, Basic Oxygen Furnace, and Electric Arc Furnace Steel Industry Slags. Environ. Sci. Technol. 34, 1576, 2000.
  • 4. JONCZY I., LATA L. Characteristic of chemical composition of converter and blast furnace slags (in Polish with English summary). Górnictwo i Geologia 8, 51, 2013.
  • 5. ILUŢIU-VARVARA D.-A. Researching the Hazardous Potential of Metallurgical Solid Wastes. Pol. J. Environ. Stud. 25 (1), 147, 2016.
  • 6. RILEY A.L., MAYES W.M. Long-term evolution of highly alkaline steel slag drainage waters. Environ. Monit. Assess. 187, 463, 2015.
  • 7. ROADCAP G.S., KELLY W.R., BETHKE C.M. Geochemistry of Extremely Alkaline (pH>12) Ground Water in Slag-Fill Aquifers. Ground Water 43, 806, 2005.
  • 8. MAYES W.M., YOUNGER P.L., AUMÔNIER J. Hydrogeochemistry of Alkaline Steel Slag Leachates in the UK. Water Air Soil Pollut 195, 35, 2008.
  • 9. VANTREES C. Analysis of Precipitates and Waters Associated with an Alkaline Leachate, Gulf State Steel Property, Gadsden, Alabama: A Reconnaissance Study. Thesis, Georgia State University, 2010.
  • 10. BOYER B.W. Alkaline leachate and calcareous tufa originating from slag in a highway embankment near Baltimore, Maryland. Transport Res Rec 1434, 3, 1994.
  • 11. BAYLESS E.R., SCHULZ M.S. Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA. Environ. Geol. 45, 252, 2003.
  • 12. MEIMA J.A., REGENSPURG S., KASSAHUN A., RAMMLMAIR D. Geochemical modelling of hardpan formation in an iron slag dump. Miner. Eng. 20, 16, 2007.
  • 13. PIATAK N.M., PARSONS M.B., SEAL II R.R. Characteristics and environmental aspects of slag: A review. Applied Geochem. 57, 236, 2015.
  • 14. DZIARMAGOWSKI M. Possibilities of converter slag utilization. Archives of Metallurgy and Materials 50 (3),769, 2005.
  • 15. JEZIERSKI J., JANERKA K. Selected aspects of metallurgical and foundry furnace dust utilization. Pol. J. Environ. Stud. 20 (1), 101, 2011.
  • 16. RUDNICK R.L., GAO S. Composition of the continental crust. In H. D. Holland, K. K. Turekian (Eds), Treatise on Geochemistry 3. Elsevier, 2003.
  • 17. JONCZY I. Forms of calcium occurrence in slags after steel production. Archives of Waste Management and Environmental Protection 16, 77, 2014.
  • 18. HULL S.L., OTY U.V., MAYES W.M. Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges. Hydrobiologia 736, 83, 2014.
  • 19. GOMES H.I., MAYES W.M., ROGERSON M., DOUGLAS I. STEWART D.I., BURKE I.T. Alkaline residues and the environment: a review of impacts, management practices and opportunities. Journal of Cleaner Production 112, 3571, 2016.
  • 20. REGULATION OF THE MINISTER OF ENVIRONMENTAL PROTECTION OF DEC. 16, 2015 (Dz. U. poz. 1800), 2015.
  • 21. SOŁTYSIAK M. The dynamic tests of leaching from metallurgical slags of the Katowice steelwork (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego 436, 475, 2009.
  • 22. CZOP M., MOTYKA J., SRACEK O., SZUWARZYŃSKI M. Geochemistry of the Hyperalkaline Gorka Pit Lake (pH>13) in the Chrzanow Region, Southern Poland. Water Air Soil Pollut 214, 423, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5646b919-e3d3-4220-9ebc-ecd6b5841eb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.