PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 88 | 1 |

Tytuł artykułu

Genetic differentiation of Allium sibiricum L. populations in Poland based on their morphological and molecular markers

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Allium sibiricum is one of the rarest plant species in the Sudetes and Carpathians. Inter simple sequence repeat DNA (ISSR) and morphological analyses were conducted to study the biogeographical relationships between geographically disjunctive populations of A. sibiricum in the Carpathians and Sudetes. The results clearly differentiated the Carpathian and Sudetes populations, but also showed a relatively high level of genetic similarity in specimens within certain groups of the Sudetes and Carpathian populations. The plants collected in the Karkonosze probably belong to a mountain form of A. schoenoprasum morphotype C which inhabits natural sites there. In contrast, the study found morphologically and genetically different plants inhabiting Pilsko Mt in the Carpathians. The plants from the Carpathians were present in scattered sites probably due to the activity of Vlach shepherds and the formation of large pastures. The species enlarged its local range due to this type of anthropopressure and likely hybridized with the cultivated Allium plants introduced by the shepherds. This may indicate that the populations on Pilsko Mt are of a partly anthropogenic character.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

88

Numer

1

Opis fizyczny

Article 3618 [13p.],fig.,ref.

Twórcy

autor
  • Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl.Grunwaldzki 24A, 50-363 Wroclaw, Poland
  • Department of Botany and Nature Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
autor
  • Department of Plant Breeding, Wroclaw University of Environmental and Life Sciences, pl.Grunwaldzki 24A, 50-363 Wroclaw, Poland

Bibliografia

  • 1. Fritsch R, Blattner F, Gurushidze M. New classification of Allium L. subg. Melanocrommyum (Webb & Berthel.) Rouy (Alliaceae) based on molecular and morphological characters. Phyton. 2010;49(2):145–220.
  • 2. Friesen N, Fritsch RM, Blattner FR. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso. 2006;22:372– 395. https://doi.org/10.5642/aliso.20062201.31
  • 3. Wróblewska A. The role of disjunction and postglacial population expansion on phylogeographical history and genetic diversity of the circumboreal plant Chamedaphne calyculata. Biol J Linn Soc Lond. 2012;105:761–775. https://doi.org/10.1111/j.1095-8312.2011.01828.x
  • 4. Urbaniak J, Kwiatkowski P, Ronikier M. Postglacial history and current population genetic diversity of a Central-European forest plant Hacquetia epipactis. Preslia. 2018;90:39–57. https://doi.org/10.23855/preslia.2018.039
  • 5. Sobierajska K, Boratyńska K, Jasińska A, Dering M, Ok T, Douaihy B, et al. Effect of the Aegean Sea barrier between Europe and Asia on differentiation in Juniperus drupacea (Cupressaceae). Bot J Linn Soc. 2016;180:365–385. https://doi.org/10.1111/boj.12377
  • 6. Friesen N, Blattner FR. RAPD analysis reveals geographic differentiations within Allium schoenoprasum L. (Alliaceae). Plant Biol. 2000;2:297–305. https://doi.org/10.1055/s-2000-3698
  • 7. Son JH, Park KC, Lee SI, Kim JH, Kim NS. Species relationships among Allium species by ISSR analysis. Hortic Environ Biotechnol. 2012;53:256–262. https://doi.org/10.1007/s13580-012-0130-3
  • 8. Hultén E. Flora of Alaska and neighboring territories. Stanford, CA: Stanford University Press; 1968.
  • 9. Friesen N. The genus Allium L. in the flora of Mongolia. Feddes Repert. 1995;106:59–81. https://doi.org/10.1002/fedr.19951060116
  • 10. Duchoslav M, Krahulec F, Bártová V. Rozšiřeni druhů rodu česnek (Allium) v České republice. III. Druhy sekci Schoenoprasum a Cepa (A. schoenoprasum, A. cepa, A. fistulosum, A. ×proliferum). Zprávy České Botanické Společnosti. 2007;42:231–245.
  • 11. Friesen N. A taxonomic and chorological revision of the genus Allium L. sect Schoenoprasum Dumort. Candollea. 1996;51:461–473.
  • 12. Kwiatkowski P, Krahulec F. Disjunct distribution patterns in vascular flora of the Sudetes. Ann Bot Fenn. 2016;53:91–102. https://doi.org/10.5735/085.053.0217
  • 13. Białecka K. Rośliny naczyniowe grupy Pilska w Beskidzie Żywieckim. Kraków: Nakł. Uniwersytetu Jagiellońskiego; 1982. (Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Prace Botaniczne; vol 10).
  • 14. Michalik S. Szata roślinna rezerwatu Pilsko w Beskidzie Żywieckim. Ochrona Przyrody. 1992;50(2):53–74.
  • 15. Bzowska B. Czosnek syberyjski Allium sibiricum L. In: Mirek Z, Piękoś-Mirkowa H, editors. Czerwona księga Karpat Polskich. Rośliny naczyniowe. Kraków: Instytut Botaniki im. W. Szafera, Polska Akademia Nauk; 2008. p. 426–428.
  • 16. Kwiatkowski P, Martyniak D, Wojtuń B. Allium sibiricum L. Czosnek syberyjski. In: Kaźmierczakowa R, Zarzycki K, Mirek Z, editors. Polska czerwona księga roślin. Paprotniki i rośliny kwiatowe. 3rd ed. Kraków: Instytut Ochrony Przyrody PAN; 2014. p. 596–598.
  • 17. Kwiatkowski P. The distribution of Allium schoenoprasum L. subsp. sibiricum (L.) Hartm. in Poland. Acta Soc Bot Pol. 1999;68:149–156. https://doi.org/10.5586/asbp.1999.021
  • 18. Rola K, Lenart-Boroń A, Boroń P. Osyczka P. Intraspecific molecular variation of Allium ursinum (Amaryllidaceae) across the border of two subspecies distribution ranges. Acta Biol Crac Ser Bot. 2015;57(1):31–43. https://doi.org/10.1515/abcsb-2015-0002
  • 19. Ziętkiewicz E, Rafalski A, Labuda D. Genome finger-printing by simple sequence repeats (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994;20:176–183. https://doi.org/10.1006/geno.1994.1151
  • 20. Wolfe AD, Xiang QY, Kephart SR. 1998. Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol. 1998;7:1107–1125. https://doi.org/10.1046/j.1365-294x.1998.00425.x
  • 21. Conte L, Cotti C, Cristofolini G. Molecular evidence for hybrid origin of Quercus crenata Lam. (Fagaceae) from Q. cerris L. and Q. suber L. Plant Biosyst. 2007;141:181–193. https://doi.org/10.1080/11263500701401463
  • 22. Goldman JJ. The use of ISSR markers to identify Texas bluegrass interspecific hybrids. Plant Breed. 2008;127:644–646. https://doi.org/10.1111/j.1439-0523.2008.01526.x
  • 23. Sutkowska A, Boroń P, Mitka J. Natural hybrid zone of the Aconitum species in the Western Carpathians: Linnaean taxonomy and ISSR fingerprinting. Acta Biol Crac Ser Bot. 2013;55:114–126. https://doi.org/10.2478/abcsb-2013-00015
  • 24. Hao G, Dong-Hee L, June SL, Nam SL. A study of taxonomical relationships among species of Korean Allium sect. Sacculiferum (Alliaceae) and related species using inter-simple sequence repeat (ISSR) markers. Botanical Bulletin of Academia Sinica. 2002;43(1):63–68.
  • 25. Hur, MK, Sung JS, Choi JS, Jeong YK, Chung KT. Population structure and genetic diversity in Korea by ISSR marker. J Life Sci. 2006;6:253–258.
  • 26. Samiei L, Kiani M, Zarghami H, Memeriani F, Joharchi MR. Genetic diversity and interspecific relationships of some Allium L. species using inter simple sequence repeat markers. Bangladesh J Plant Taxon. 2015;22(2):67–75. https://doi.org/10.3329/bjpt.v22i2.26029
  • 27. Mukherjee A, Skidar B, Ghosh B, Banerjee A, Ghosh E, Bhattacharya M, et al. RAPD and ISSR analysis of some economically important species, varieties and cultivars of the genus Allium (Alliaceae). Turk J Botany. 2013;37:605–618. https://doi.org/10.3906/bot-1208-18
  • 28. Totallab. Core Laboratory Image Quantification Software (CLIQS) [Software]. 2016 [cited 2019 Mar 22]. Available from: http://totallab.com/
  • 29. Excoffier L, Lischer HEL. Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564– 567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  • 30. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89:583–590.
  • 31. Yeh FC, Yang RC, Boyle T. POPGENE 32-version 1.31 [Software]. 1999 [cited 2019 Mar 22]. Available from: https://sites.ualberta.ca/~fyeh/popgene_download.html
  • 32. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959.
  • 33. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007;7:574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x
  • 34. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  • 35. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng HG, et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 2005;3:1289–1299. https://doi.org/10.1371/journal.pbio.0030196
  • 36. Earl DA, Holdt BM. STRUCTURE HARVESTER: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–361. https://doi.org/10.1007/s12686-011-9548-7
  • 37. Jakobsson M, Rosenberg NA. CLUMP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. https://doi.org/10.1093/bioinformatics/btm233
  • 38. Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4:137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x
  • 39. Ghostugum Software. GSview32. Ver. 4.8 [Software]. 2006 [cited 2019 Mar 22]. Available from: http://www.ghostgum.com.au/
  • 40. Nei M, Li H. Genetic distance between populations. Am Nat. 1972;106(949):283–292. https://doi.org/10.1086/282771
  • 41. Schlüter PM, Harris SA. Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes. 2006;6(2):569–572. https://doi.org/10.1111/j.1471-8286.2006.01225.x
  • 42. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23(2):254–267. https://doi.org/10.1093/molbev/msj030
  • 43. StatSoft, Inc. STATISTICA. Version 13 [Software]. Tulsa, OK: StatSoft; 2018.
  • 44. Stearn WT. European species of Allium and allied genera of Alliaceae – a synonymic enumeration. Annales Musei Goulandris. 1978;4:83–198.
  • 45. Schönswetter P, Stehlik I, Holderegger R, Tribsch A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol. 2005;14:3547–3555. https://doi.org/10.1111/j.1365-294X.2005.02683.x
  • 46. Urbaniak J, Kwiatkowski P, Pawlikowski P. Phylogeography of Swertia perennis in Europe based on cpDNA markers. PeerJ. 2018;6:e5512. https://doi.org/10.7717/peerj.5512
  • 47. Cieślak E. Variation and genetic structure of Serratula lycopifolia populations (Vill.) Kern. (Asteraceae) in Poland and adjacent regions. Acta Soc Bot Pol. 2013;82(1):67–75. https://doi.org/10.5586/asbp.2013.006
  • 48. Freeland J. Ekologia molekularna. Warszawa: PWN; 2008.
  • 49. Ralski E. Hale i łąki Pilska w Beskidzie Zachodnim. Kraków: Polska Akademia Umiejętności; 1930.
  • 50. Łajczak A. Monografia Masywu Pilska (Beskid Żywiecki). Kraków: Instytut Botaniki im. W. Szafera, Polska Akademia Nauk; 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5639d29e-720b-4282-831f-d32496a84e71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.