PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 1 |

Tytuł artykułu

Role of lipoxygenases and poly(ADP-ribose) polymerase in amyloid beta cytotoxicity

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The roles of 12/15-lipoxygenase(s) (LOX), poly(ADP-ribose) polymerase (PARP-1) activity and mitochondrial apoptosis inducing factor (AIF) protein in the molecular processes evoked by amyloid β (Aβ) toxicity were investigated in PC12 cells that express either wild-type (APPwt) or double Swedish mutation (APPsw) forms of human Aβ precursor protein. Different levels of Aβ secretion characterize these cells. The results demonstrated a relationship between the Aβ levels and LOX protein expression and activity. High Aβ concentration in APPsw cells correlated with a significant increase in free radicals and LOX activation, which leads to translocation of p65/NF-κB into the nucleus. An increase in AIF expression in mitochondria was observed concurrently with inhibition of PARP-1 activity in the nuclear fraction of APPsw cells. AIF accumulation in mitochondria may be involved in adaptive/protective processes. However, inhibition of PARP-1 may be responsible for the disturbances in transcription and DNA repair as well as the degeneration of APP cells. Under conditions of increased nitrosative stress, evoked by the nitric oxide donor, sodium nitroprusside (SNP, 0.5 mM), 70-80 % of all cells types died after 24 h, significantly more in APPsw cells. There was no further significant change in mitochondrial AIF level and PARP-1 activity compared to corresponding nontreated with SNP cells. Only one exception was observed in PC12 control, where SNP significantly inhibits PARP-1 activity. Moreover, SNP significantly activated gene expression for 12/15-LOX in all types of investigated cells. Inhibitors of all LOX isoforms and specific inhibitor of 12-LOX enhanced the survival of cells that were subjected to SNP. We conclude that the LOX pathways may play a role in Aβ toxicity and in nitrosative-stress-induced cell death and that inhibition of these pathways offers novel protective strategies. Supported by MS&HE grant NN40113938 and MRC statutory theme No 7.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

71

Numer

1

Opis fizyczny

p.148

Twórcy

autor
  • Mossakowski Medical Research Centre, Department of Cellular Signaling, Polish Academy of Sciences, Warsaw, Poland
  • Mossakowski Medical Research Centre, Department of Cellular Signaling, Polish Academy of Sciences, Warsaw, Poland
autor
  • Mossakowski Medical Research Centre, Department of Cell Ultrastructure, Polish Academy of Sciences, Warsaw, Poland
  • Mossakowski Medical Research Centre, Department of Neurosurgery, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5623c141-ab85-4e47-8213-f04a0130c9ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.